{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Inverters" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Maximum_output_frequency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_1\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "R=80;//ohm\n", "L=8;///mH\n", "C=1.2;// micro F\n", "\n", "//Solution :\n", "if R^2<4*(L*10^-3)/(C*10^-6) then\n", " disp('As R^2<4*L/C, Circuit will work as a series inverter.');\n", "else\n", " disp('As R^2>4*L/C, Circuit will not work as a series inverter.');\n", "end\n", "omega_m=sqrt(1/(L*10^-3*C*10^-6)-R^2/4/(L*10^-3)^2);//rad/s\n", "fm=omega_m/2/%pi;//Hz\n", "disp(fm,'Maximum frequency in Hz : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Frequency_of_output.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_2\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "R=80;//ohm\n", "L=8;///mH\n", "C=1.2;// micro F\n", "Toff=14;//micro sec\n", "\n", "//Solution :\n", "omega_m=sqrt(1/(L*10^-3*C*10^-6)-R^2/4/(L*10^-3)^2);//rad/s\n", "fm=omega_m/2/%pi;//Hz\n", "T=1/fm;//sec\n", "f=1/(T+2*Toff*10^-6);//Hz\n", "disp(f,'Frequency of output in Hz : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: Voltage_power_and_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_3\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "RL=3;//in ohm\n", "V=30;//in V\n", "\n", "//Solution :\n", "Vpeak=2*V/%pi;//V\n", "Vrms=Vpeak/sqrt(2);//V\n", "disp(Vrms,'(a) RMS value of output voltage(V) : ');\n", "//VL=sqrt(2/T*integrate('(V/2)^2','t',0,T/2));//V\n", "VL=V/2;//V\n", "Pout=VL^2/RL;//W\n", "disp(Pout,'(b) Output power(W) : ');\n", "Ipeak=VL/RL;//A\n", "disp(Ipeak,'(c) Peak current in thyristor(A) : ');\n", "Iavg=Ipeak*50/100;//A\n", "disp(Iavg,'(d) Average current of each thyristor(A) : ');\n", "Vprb=2*VL;//V\n", "disp(Vprb,'(e) Peak reverse braking voltage(V) : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: Voltage_power_and_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_4\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "RL=3;//in ohm\n", "V=30;//in V\n", "\n", "//Solution :\n", "Vpeak=4*V/%pi;//V\n", "Vrms=Vpeak/sqrt(2);//V\n", "disp(Vrms,'(a) RMS value of output voltage in volt : ');\n", "//VL=sqrt(2/T*integrate('V^2','t',0,T/2));//V\n", "VL=V;//V\n", "Pout=VL^2/RL;//W\n", "disp(Pout,'(b) Output power(W) : ');\n", "Ipeak=VL/RL;//A\n", "disp(Ipeak,'(c) Peak current in thyristor(A) : ');\n", "Iavg=Ipeak*50/100;//A\n", "disp(Iavg,'(d) Average current of each thyristor(A) : ');\n", "Vprb=VL;//V\n", "disp(Vprb,'(e) Peak reverse braking voltage(V) : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Current_Distortion_and_power.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_5\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "V=200;//V\n", "R=10;//in ohm\n", "L=20;//mH\n", "C=100;//pF\n", "f=50;//Hz\n", "\n", "//Solution :\n", "Z1=R+%i*(2*%pi*f*L*10^-3-1/(2*%pi*f*C*10^-6));//ohm\n", "Z3=R+%i*(3*2*%pi*f*L*10^-3-1/(3*2*%pi*f*C*10^-6));//ohm\n", "Z5=R+%i*(5*2*%pi*f*L*10^-3-1/(5*2*%pi*f*C*10^-6));//ohm\n", "Z7=R+%i*(7*2*%pi*f*L*10^-3-1/(7*2*%pi*f*C*10^-6));//ohm\n", "Z9=R+%i*(9*2*%pi*f*L*10^-3-1/(9*2*%pi*f*C*10^-6));//ohm\n", "I=4*V/%pi/abs(Z1);//A\n", "Irms=I/sqrt(2);//A\n", "disp(Irms,'RMS load current(A)');\n", "Ip=sqrt((4*V/%pi/abs(Z1))^2+(4*V/3/%pi/abs(Z3))^2+(4*V/5/%pi/abs(Z5))^2+(4*V/7/%pi/abs(Z7))^2+(4*V/9/%pi/abs(Z9))^2);//A\n", "disp(Ip,'Peak value of load current(A)');\n", "Ih=sqrt(Ip^2-I^2)/sqrt(2);//A\n", "disp(Ih,'RMS harmonic current(A)');\n", "hd=sqrt(Ip^2-I^2)/I;//harmonic distortion\n", "disp(hd*100,'Harmonic distortion(%)');\n", "Irms_load=Ip/sqrt(2);//A\n", "Pout=Irms_load^2*R;//W\n", "disp(Pout,'Total output power(W)');\n", "Pout_com=Irms^2*R;//W(fundamental component)\n", "disp(Pout_com,'Fundamental component of power(W)');\n", "Iavg_in=Pout/V;//A\n", "disp(Iavg_in,'Average input current(A)');\n", "Ip_thy=Ip;//A\n", "disp(Ip_thy,'Peak thyristor current(A)');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6: Find_value_of_C.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_6\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "R=2;//in ohm\n", "XL=10;//ohm\n", "f=4;//kHz\n", "Toff=12;//micro sec\n", "\n", "//Solution :\n", "Toff_time=Toff*1.5;//micro sec\n", "theta=2*%pi*f*10^3*Toff_time*10^-6;//radians\n", "Xc=tan(theta)*R+XL;//ohm\n", "C=1/(2*%pi*f*1000*Xc);//F\n", "disp(C,'Value of Capacitance in F : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.7: Current_and_power.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_7\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "V=400;//V\n", "R=10;//in ohm/phase\n", "\n", "//Solution :\n", "Ipeak=V/2/R;//A\n", "Irms=sqrt(Ipeak^2*2/3);//A\n", "disp(Irms,'RMS load current in A : ');\n", "Pout=Irms^2*R*3;//W\n", "disp(Pout,'Power output(W) : ');\n", "Iavg=Ipeak/3;//A\n", "disp(Iavg,'Average thyristor current(A) : ');\n", "Irms_thyristor=sqrt(Ipeak^2/3);//A\n", "disp(Irms_thyristor,'RMS value of thyristor current(A) : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.8: Current_and_power.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3_8\n", "clc;\n", "clear;close;\n", "\n", "//Given data: \n", "V=400;//V\n", "R=10;//in ohm/phase\n", "\n", "//Solution :\n", "RL=R+R/2;//ohm\n", "i1=V/RL;//A\n", "i2=V/RL;//A\n", "i3=V/RL;//A\n", "Irms_load=sqrt(1/2/%pi*(integrate('i1^2','theta',0,2*%pi/3)+integrate('(i1/2)^2','theta',2*%pi/3,2*%pi)));//A\n", "disp(Irms_load,'RMS load current in A : ');\n", "Pout=Irms_load^2*R*3;//W\n", "disp(Pout,'Power output(W): ');\n", "Ipeak=i1;//A\n", "Iavg=1/2/%pi*[Ipeak*%pi/3+Ipeak/2*2*%pi/3];//A\n", "disp(Iavg,'Average thyristor current(A) : ');\n", "Irms_thyristor=sqrt(1/2/%pi*[Ipeak^2*%pi/3+(Ipeak/2)^2*2*%pi/3]);//A\n", "disp(Irms_thyristor,'RMS value of thyristor current(A) : ');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }