{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 16: Supercharging of IC Engines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.1: Power_supplied_to_supercharger.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;funcprot(0);//EXAMPLE 16.1\n", "// Initialisation of Variables\n", "pwu=735;............//Power developed by naturally aspirated engine in kW\n", "afru=12.8;.............//Air fuel ratio for naturally aspirated engine\n", "bsfc=0.350;......//Brake specific fuel consumption in kg/kWh\n", "metau=0.86;...........//Mechanical efficiency of naturally aspirated engine\n", "pi=730;...........//Inlet pressure in mm of Hg absolute\n", "tm=325;...........//Mixture temperature in Kelvin\n", "pr=1.6;.............//Pressure ratio of supercharged engine\n", "etaa=0.7;.............//Adiabatic efficiency of supercharged engine\n", "metas=0.9;..............//Mechanical efficiency of supercharged engine\n", "afrs=12.8;.............//Air fuel ratio for supercharged engine\n", "rhohg=13600;.............//Density of mercury in kg/m^3\n", "R=0.287;...................//Gas constant in kJ/kgK\n", "ga=1.4;................//Degree of freedom for gas\n", "cp=1.005;..................//Specific heat of the fuel\n", "g=9.81;................//Acceleration due to gravity in m/s^2\n", "//calculations\n", "t2=tm*(pr)^((ga-1)/ga);..............//Ideal temperature for the supercharged engine\n", "t2a=tm+(t2-tm)/etaa;................//Actual temperature for the supercharged engine\n", "wa=cp*(t2a-tm);.....................//Work of the supercharger\n", "wsup=cp*(t2a-tm)/metas;..............//Work required to drive the supercharger in kJ/kg of air\n", "//When unsupercharged\n", "p1=(pi/1000)*((g*rhohg)/1000);..............//Inlet pressure in kN/m^2\n", "rhounsup=p1/(R*tm);\n", "maunsup=(bsfc*pwu*afrs)/3600;...................//Air consumption in kg/s for unsupercharged engine\n", "//When supercharged\n", "rhosup=(pr*p1)/(R*t2a);\n", "masup=maunsup*(rhosup/rhounsup);..................//Air consumption in kg/s\n", "Psup=masup*wsup;...............//Power required to run the supercharger in kW\n", "disp(Psup,'The Power required to run the supercharger (kW):')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.2: Engine_Capacity_and_Brake_Mean_effective_Pressure.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;funcprot(0);//EXAMPLE 16.2\n", "// Initialisation of Variables\n", "p1=1.0132;..............//Mean pressure at sea level in bar\n", "t1=283;................//Mean temperature at sea level in Kelvin\n", "BP=260;....................//Brake Power output in kW\n", "etaV=0.78;..................//Volumetric efficiency at sea level free air condition\n", "sfc=0.247;............//Specific Fuel consumption in kg/kW.h\n", "afr=17;...................//Air fuel ratio\n", "N=1500;...................//Engine rpm\n", "at=2700;.................//Altitude in mts\n", "p2=0.72;................//Pressure in bar at the given altitude\n", "Psup=0.08;.................//8% power of engine is taken by the supercharger\n", "R=287;...................//Gas constant in J/kgK\n", "t2=32+273;..............//Temperature in Kelvin at the given altitude\n", "//calculations\n", "mf=(sfc*BP)/60;.............//Fuel consumption in kg/min\n", "ma = mf*afr;..................//Air consumption in ig/min\n", "acps = ma/(N/2);............//Air consumption per stroke in kg\n", "Vs=(acps*R*t1)/(etaV*p1*10^5);................//Engine capacity in m^3\n", "disp(Vs,'The Engin Capacity in m^3:')\n", "pmb=(BP*6)/(Vs*10*(N/2));........//Brake Mean Effective Pressure in bar\n", "disp(pmb,'The Brake mean effective pressure is (bar) :')\n", "gp=BP/(1-Psup);.................//Gross power produced by supercharged engine in kW\n", "masup=ma*gp/BP;......................//Mass of air required for supercharged engine in kg\n", "matc=masup/(N/2);..............//Mass of air taken per cycle\n", "pressure=(matc*R*t2)/(etaV*10^5*Vs);\n", "disp(pressure-p2,'The Increase of pressure required (in bar):')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.3: Increase_in_Brake_Power_due_to_supercharger.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;funcprot(0);//EXAMPLE 16.3\n", "// Initialisation of Variables\n", "ec=3600*10^(-6);.............//Engine capacity in m^3\n", "pw=13;...............//Power developed in kW per m^3 of free air induced per minute\n", "etaV=0.82;............//Volumetric Efficiency\n", "N=3000;................//Engine rpm\n", "p1=1.0132;...........................//Initial Air pressure in bar\n", "t1=298;........................//Initial Temperature in Kelvin\n", "pr=1.8;.....................//Pressure ratio in rotary compressor\n", "etaC=0.75;.................//Isentropic efficiency of compressor\n", "etaM=0.8;....................//Mechanical efficiency\n", "ga=1.4;.....................//Degree of freedom for the gas\n", "td=4;.......................//The amount by which the temperature is kess than delivery temperature from compressor\n", "R=287;......................//Gas constant in J/kg.K\n", "cp=1.005;.....................//Specific heat capacity\n", "//Calculations\n", "Vs=(ec*N)/2;....................//Swept volume in m^3/min\n", "Vu=Vs*etaV;....................//Unsupercharged volume induced per min\n", "rcdp=pr*p1;........//Rotary compressor delivery pressure\n", "t2=t1*(pr)^((ga-1)/ga);..............//Ideal temperature for the supercharged engine\n", "t2a=t1+(t2-t1)/etaC;................//Actual temperature for the supercharged engine\n", "ta=t2a-td;............................//Temperature of air at intake to the engine cylinder\n", "V1=(rcdp*Vs*t1)/(p1*ta);.................//Equivalent volume at 1.0132 bar and 298 K\n", "Vinc=V1-Vs;...........................//Increase in induced Volume of air in m^3/min\n", "ipincai=pw*Vinc;.......................//Increase in IP from air induced in kW\n", "ipinciip=((rcdp-p1)*10^5*Vs)/(60*1000);...........//Increase in IP due to increased induction pressure kW\n", "ipinctot=ipincai+ipinciip;...............//Total increase in Input Power in kW\n", "bpinc=ipinctot*etaM;....................//Increase in Brake Power of the engine in kW\n", "ma=(rcdp*10^5*Vs)/(60*R*ta);...................//Mass of air delivered by the compressor kg/s\n", "pc=(ma*cp*(t2a-t1))/etaM;....................//Power required by the compressor\n", "bpincnet=bpinc-pc;..........................//Net Increase in BP\n", "disp(bpincnet,'The Net increase in Brake Power in kW:')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.4: Engine_Capacity_and_Brake_Mean_effective_Pressure.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;funcprot(0);//EXAMPLE 16.4\n", "// Initialisation of Variables\n", "p1=1.0132;..............//Mean pressure at sea level in bar\n", "t1=283;................//Mean temperature at sea level in Kelvin\n", "BP=250;....................//Brake Power output in kW\n", "etaV=0.78;..................//Volumetric efficiency at sea level free air condition\n", "sfc=0.245;............//Specific Fuel consumption in kg/kW.h\n", "afr=17;...................//Air fuel ratio\n", "N=1500;...................//Engine rpm\n", "at=2700;.................//Altitude in mts\n", "p2=0.72;................//Pressure in bar at the given altitude\n", "Psup=0.08;.................//8% power of engine is taken by the supercharger\n", "R=287;...................//Gas constant in J/kgK\n", "t2=32+273;..............//Temperature in Kelvin at the given altitude\n", "//calculations\n", "mf=(sfc*BP)/60;.............//Fuel consumption in kg/min\n", "ma = mf*afr;..................//Air consumption in ig/min\n", "acps = ma/(N/2);............//Air consumption per stroke in kg\n", "Vs=(acps*R*t1)/(etaV*p1*10^5);................//Engine capacity in m^3\n", "disp(Vs,'The Engin Capacity in m^3:')\n", "pmb=(BP*6)/(Vs*10*(N/2));........//Brake Mean Effective Pressure in bar\n", "disp(pmb,'The Brake mean effective pressure is (bar) :')\n", "gp=BP/(1-Psup);.................//Gross power produced by supercharged engine in kW\n", "masup=ma*gp/BP;......................//Mass of air required for supercharged engine in kg\n", "matc=masup/(N/2);..............//Mass of air taken per cycle\n", "pressure=(matc*R*t2)/(etaV*10^5*Vs);\n", "disp(pressure-p2,'The Increase of pressure required (in bar):')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.5: Compressor_run_by_supercharged_Engine.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;funcprot(0);//EXAMPLE 16.5\n", "// Initialisation of Variables\n", "t1=298;.................//Temperature of the air while entering the compressor in Kelvin\n", "qrej=1210;..............//Amount of heat rejected in cooler in kJ/min\n", "t2=273+65;...............//Temperature of the air leaving the cooler in Kelvin\n", "p2=1.75;.................//Pressure of the air leaving the cooler in bar\n", "n=6;.....................//No of cylinders\n", "d=0.1;...................//Bore of the cylinder in m\n", "l=0.11;...................//Stroke of the cylinder in m\n", "etaV=0.72;................//volumetric efficiency\n", "N=2000;...............//Engine rpm\n", "Tout=150;..................//Torque Output in Nm\n", "etaM=0.8;..................//Mechanical efficiency\n", "R=287;.......................//Gas constant for air in J/kgK\n", "cp=1.005;...................//Specific capacity of air\n", "//calculations\n", "BP=(2*%pi*N*Tout)/(60*1000);...........//Brake power in kW\n", "IP=BP/etaM;..........//Input Power in kW\n", "Vc=(%pi/4)*d*d*l;...................//Cylinder Volume in m^3\n", "pmi=(6*IP)/(n*Vc*(N/2)*10);................//Indicated mean effective pressure\n", "disp(pmi,'The indicated mean effective pressure (in bar):')\n", "Vs=Vc*6*(N/2);.........................//Engine Swept Volume in m^3/min\n", "Vaa=Vs*etaV;..........................//Aspirated volume of air into engine in m^3/min\n", "maa=(p2*10^5*Vaa)/(R*t2);..............//Aspirated air mass flow into the engine in kg/min\n", "disp(maa,'The total aspirated air mass flow into the engine (in kg/min):')\n", "t2a=((((BP/cp)/(qrej/(60*cp)))*t2)-t1)/(((BP/cp)/(qrej/(60*cp)))-1);\n", "mc=((BP/cp)/(t2a-t1))*60;........................//Air flow into the compressor in kg/min\n", "disp(mc,'Air flow into the compressor in kg/min:')\n", "\n", "" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }