{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: CMOS Realization Of Inverters" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2: Value_of_RL_ans_WbyL.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 8.2\n", "clc;\n", "clear;\n", "close;\n", "// Given data\n", "NMH= 1;// in V\n", "VIH= 2;// in V\n", "VTon= 0.5;// in V\n", "VOL= 0.2;// in V\n", "VDD= 3;// in V\n", "KP= 30*10^-6;// in A/V^2\n", "PD= 100*10^-6;// power dissipation in W\n", "// Formula VIH= VTon +2*sqrt(2*VDD/(3*kn*RL))-1/(kn*RL) (i)\n", "// Let x= 1/(kn*RL), putting the values in (i), we get\n", "// x^2-5*x+2.25=0\n", "x= [1 -5 2.25];\n", "x= roots(x);\n", "x=x(2);\n", "// Formula PD= VDD*(VDD-VOL)/(2*RL)\n", "RL= VDD*(VDD-VOL)/(2*PD);// in Ω\n", "disp(RL,'The value of RL in Ω is : ')\n", "kn= 1/(x*RL);// in A/V^2\n", "// Formula kn= KP*(W/L)\n", "WbyL= kn/KP;\n", "disp(WbyL,'The value of (W/L)n is : ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4: CMOS_Inverter.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 8.4\n", "clc;\n", "clear;\n", "close;\n", "// Given data\n", "unCox= 40;// in µA/V^2\n", "upCox= 20;// in µA/V^2\n", "Ln= 0.5;// in µm\n", "Lp= 0.5;// in µm\n", "Wn= 2.0;// in µm\n", "Wp= unCox*Wn/upCox;// in µm\n", "disp(Wp,'The value of Wp in µm is : ')\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5: Value_of_VOH_VOL_and_Vth.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 8.5\n", "clc;\n", "clear;\n", "close;\n", "// Given data\n", "VTO= 0.43;// in V\n", "VDD= 2.5;// in V\n", "g=0.4; // value of gamma\n", "W1= 0.375;\n", "L1=0.25;\n", "W2= 0.75;\n", "L2=0.25;\n", "//VDD-VOUT-VT= VDD-VOUT-(VTO+g*(sqrt(0.6+VOUT)-sqrt(0.6)))=0\n", "//VOUT^2+VOUT*(2*A-g^2)+(A-0.6*g^2)=0, where\n", "A=VTO-VDD-g*sqrt(0.6);// assumed\n", "B= (2*A-g^2);// assumed\n", "C=(A^2-0.6*g^2);//assumed\n", "VOUT= [1 B C];\n", "VOUT= roots(VOUT);// in V\n", "VOUT= VOUT(2);// in V\n", "VOH= VOUT;// in V\n", "disp(VOH,'The value of VOH in volts is : ')\n", "Vout=(W1+3*L2)-(VDD-VTO)*(W2*L1/(W1*L2)-1)+ (VDD)/(VDD-VTO)\n", "VOL= Vout;// in V\n", "disp(VOL,'The value of VOL in volts is : ')\n", "Vth= (VDD+VTO-L1)/(VDD*VTO)*(1-W1*L2/(W2*L1))+(L1*L2/VDD)\n", "disp(Vth,'The value of Vth for circuit A in volts is : ')\n", "W4= 0.365;\n", "L4=0.25;\n", "W3= 0.75;\n", "L3=0.15;\n", "Vth=(L3*L4/VDD)+(VDD/(W3*L4*VDD))-(VDD)/(1-W4*L3/(W3*L4))-2*W4\n", "disp(Vth,'The value of Vth for circuit B in volts is : ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.6: Value_of_Vx.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 8.6\n", "clc;\n", "clear;\n", "close;\n", "// Given data\n", "VTO= 0.43;// in V\n", "VDD= 2.5;// in V\n", "g=0.5; // value of gamma\n", "//VDD-Vx-VT= VDD-Vx-(VTO+g*(sqrt(0.6+Vx)-sqrt(0.6)))=0\n", "//Vx^2+Vx*(2*A-g^2)+(A-0.6*g^2)=0, where\n", "A=VTO-VDD-g*sqrt(0.6);// assumed\n", "B= (2*A-g^2);// assumed\n", "C=(A^2-0.6*g^2);//assumed\n", "Vx= [1 B C];\n", "Vx= roots(Vx);// in V\n", "Vx= Vx(2);// in V\n", "disp(Vx,'The value of Vx in volts is : ')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }