{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: Pressure" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.10: Capacitance_calculation_for_variable_dielectric.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.10, page no-121\n", "clear\n", "clc\n", "\n", "c=0.57\n", "\n", "//(a)\n", "d=0.1\n", "di1=100\n", "di2=1000\n", "c1=c*di1*10/d\n", "c1=ceil(c1)\n", "printf('(a)\nC1=%d pf',c1)\n", "\n", "//(b)\n", "c2=c*di2*10/d\n", "printf('\n(b)\nC2=%d pf',c2)\n", "\n", "//(c)\n", "ds=0.09\n", "c11=c*di1*10/ds\n", "c12=c*di2*10/ds\n", "printf('\n(c)\nC1 = %.1f pf\nC2 = %d pf',c11,c12)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.11: pressure_gauge_caliberatio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.11, page no-121\n", "clear\n", "clc\n", "\n", "A=1\n", "p1=10\n", "W1=A*p1\n", "printf('W1 = %d kg',W1)\n", "printf('\nWith the 4 standard weights of 10kg, 20kg, 30kg and 40kg ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.12: pressure_calculation_using_McLeod_gauge.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.12, page no-122\n", "clear\n", "clc\n", "\n", "p1=10^-2\n", "h1=20\n", "K=p1/h1^2\n", "p2=K*30^2\n", "p2=p2*100\n", "printf('The unknown pressure p2 = %.2f * 10^-2 torr',p2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1: Pressure_conversion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.1, page no-116\n", "clear\n", "clc\n", "\n", "//(a)\n", "//1kg/cm^2=10000 mmWG\n", "x=10000*10\n", "printf('(a)\n 10kg/cm^2 = %d mmWG',x)\n", "\n", "//(b)\n", "onemm_Hg=13.546\n", "y=10^5/onemm_Hg\n", "y=y/10^3\n", "printf('\n(b)\n10kg/cm^2 = 10^5 mmWG = %.2f * 10^3 mmHg',y)\n", "\n", "//(c)\n", "onebar=1.03 \n", "z=10/onebar\n", "printf('\n(c)\n10kg/cm^2 = %.2f bars',z)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2: Gauge_and_absolute_pressure.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.2, page no-116\n", "clear\n", "clc\n", "\n", "//(a)\n", "gamm=1000\n", "d=35\n", "dens_Hg=13.546\n", "press_in_kg_cm=gamm*d*10^-4\n", "press_in_mmHg=gamm*d/dens_Hg\n", "press_in_mmHg=press_in_mmHg/10^3\n", "printf('(a)\nThe pressure at depth of %d meters in a water tank=%.1f kg/cm^2 = %.2f*10^3 mmHg',d,press_in_kg_cm,press_in_mmHg)\n", "\n", "//(b)\n", "press_atm=1.03\n", "abspress=press_in_kg_cm+press_atm\n", "abspress_mmHg=press_in_mmHg*1000+760\n", "abspress_mmHg=abspress_mmHg/1000\n", "printf('\n(b)\nAbsolute Pressure= %.2f kg/cm^2 Abs = %.2f*10^3 mmHg Abs',abspress,abspress_mmHg)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3: Gauge_and_absolute_pressure.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.3, page no-116\n", "clear\n", "clc\n", "\n", "egp=260\n", "abspress=760-egp\n", "printf('Absolute Presssure = %d mmHg',abspress)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4: pressure_measurement_using_U_tube_manometer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.4, page no-117\n", "clear\n", "clc\n", "\n", "//(a)\n", "p_diff=500\n", "pdiff=p_diff*13.546/10000\n", "printf('(a)\np1-p2 = %.3f kg/cm^2',pdiff)\n", "\n", "//(b)\n", "p1=6770\n", "p_atm=10300\n", "abs_p1=p1+p_atm\n", "printf('\n(b)If p2 is open to atmosphere:\nAbsolute Pressure P1 = %d mmWG abs.',abs_p1)\n", "\n", "//(c)\n", "P1=500\n", "P1_gauge=P1-760\n", "printf('\n(c)If p2 is evacuated and sealed:\np1= %d mmHg gauge Pressure',P1_gauge)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5: Specific_Gravity_and_weight_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.5, page no-117\n", "clear\n", "clc\n", "\n", "spe_grav_water=1\n", "spe_grav_X=spe_grav_water*100/50\n", "wt_dens_water=1000\n", "wt_dens_X=wt_dens_water*2\n", "printf('Weight Density of X = %d kg/m^3',wt_dens_X)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6: water_flow_rate_using_mercury_manometer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.6, page no-117\n", "clear\n", "clc\n", "\n", "A=1/20\n", "p_diff=1500\n", "printf('(a)\nAs Delta_h=A2/A1*h << h and normally negligiblefor well type manometer\nhence, p1-p2 = h = %d =111 mmHg',p_diff)\n", "\n", "printf('\n(b)\nh measured above the oriinal reference will be half of H, i.e. 111/2=55.5 mmHg\n(Since area of both legs are same)')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.7: readings_and_errors_in_Bourdon_gauge_reading.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.7, page no-119\n", "clear\n", "clc\n", "\n", "printf('1 kg/cm^2 = 10 mWG\n')\n", "//(a)\n", "press=10+2\n", "printf('\n(a)Bourdon Gauge is mounted 20 meters below water line:\nPressure read by the Gauge = %d kg/cm^2',press)\n", "\n", "//(b)\n", "press2=10-3\n", "printf('\n\n(b)Bourdon Gauge is located 30 meters above the water line:\nPressure read by the Gauge = %d kg/cm^2',press2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.8: Specific_Gravity_and_density_of_liquid.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.8, page no-120\n", "clear\n", "clc\n", "\n", "dens_water=1000\n", "h1=125\n", "h2=250\n", "d2=(h1/h2)*dens_water\n", "printf('(a)\nDensity of Liquid = %d kg/m^3',d2)\n", "printf('\nSpecific Density of the liquid = %.1f',(h1/h2))\n", "\n", "//(b)\n", "printf('\n\n(b)\nIf Values of water and liquid interchanged:\n')\n", "d3=(h2/h1)*dens_water\n", "printf('\nDensity of Liquid = %d kg/m^3',d3)\n", "printf('\nSpecific Density of the liquid = %.1f',(h2/h1))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.9: strain_gauge_wire_length_and_cross_section_area.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 2.9, page no-120\n", "clear\n", "clc\n", "\n", "R=120\n", "l=122\n", "a=0.1\n", "rho=R*a/l\n", "R1=140\n", "l1=sqrt(R1*a*l/rho)\n", "l1=ceil(l1)\n", "printf('Length l1 = %d meters',l1)\n", "A1=a*l/l1\n", "printf('\nArea A1 = %.4f mm^2',A1)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }