{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11: Conduction of heat" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.10: The_distance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "t1=15;//temperature of the one end of the slab in deg.C\n", "t2=45;//temperature of the other end of the slab in deg.C\n", "k=0.3;//thermal conductivity in cgs unit\n", "d=7;//density of the material in gm/cc\n", "cp=1;//specific heat of the material in kj/kg.K\n", "t=5*3600;//time in sec\n", "dt=1/10;//thermometer reading in deg.C\n", "\n", "//CALCULATIONS\n", "b=(3.14*d*cp/(t*k))^(0.5);\n", "x=(log((t2-t1)/dt))/b;//distance from which temparature variation can be detected in cm\n", "\n", "//OUTPUT\n", "mprintf('the distance from which temparature variation can be detected is %3.1f cm',x)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.1: The_amount_of_heat_conducted.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "k=0.12;//thermal conductivity in cgs unit\n", "t1=200;//temperature at one side in deg.C\n", "t2=50;//temperature at other side in deg.C\n", "t=3600;//time in sec\n", "a=1;//area in sq.cm\n", "t3=3;//thickness of the plate in cm\n", "\n", "//CALCULATIONS\n", "q=k*a*(t1-t2)*t/t3;//amount of heat conducted in cal\n", "\n", "//OUTPUT\n", "mprintf('the amount of heat conducted is %3.2f cal',q)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.2: The_rate_of_flow_of_water.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "k=0.9;//thermal conductivity in cgs unit\n", "a=10;//area of the copper bar in sq.cm\n", "t1=100;//hot side temperature in deg.C\n", "t2=20;//cool side temperature in deg.C\n", "d=25;//thickness of the bar in cm\n", "t3=14;//temperature of water when entering in deg.C\n", "\n", "//CALCULATIONS\n", "m=k*a*(t1-t2)/(d*(t2-t3));//rate flow of water in gm/sec\n", "\n", "//OUTPUT\n", "mprintf('rate flow of water is %3.2f gm/sec',m)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.3: The_thermal_conductivity_of_cork.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "i=1.18;//current in amperes\n", "e=20;//potential difference across its ends in volts\n", "j=4.2;//joules constant in joule/cal\n", "a=2*10^4;//area of the slab in sq.cm\n", "t=5;//thickness of the plate in cm\n", "t1=12.5;//temperature at hot side in K\n", "t2=0;//temperature at cold side in k\n", "\n", "//CALCULATIONS\n", "k=e*i*t/(j*a*(t1-t2));//thermal conductivity in cgs unit\n", "\n", "//OUTPUT\n", "mprintf('thermal conductivity of slab is %3.5f cgs unit',k)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.4: The_thermal_conductivity_of_glass.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "l=30;//length of the tube in cm\n", "t=100;//temperature at outside in deg.C\n", "t1=40;//tempertaure of water when leaving tube in deg.C\n", "t2=20;//temperature of water when entering tube in deg.C\n", "m=165/60;//mass flow rete of water in cc/sec\n", "r1=6;//internal radii in mm\n", "r2=8;//external radii in mm\n", "\n", "//CALCULATIONS\n", "k=m*(t1-t2)*log(r2/r1)/(2*3.14*l*(t-((t1+t2)/2)));//thermal conductivity in cgs unit\n", "\n", "//OUTPUT\n", "mprintf('thermal conductivity of the tube is %3.4f cgs unit',k)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.5: The_thermal_conductivity_of_nickel.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "l1=1.9;//length of the first bar in cm\n", "l2=5;//length of the second bar in cm\n", "k2=0.92;//thermal conductivity in cgs unit\n", "\n", "//CALCULATIONS\n", "k1=k2*(l1/l2)^2;//thermal conductivity if first bar in cgs unit\n", "\n", "//OUTPUT\n", "mprintf('thermal conductivity of first bar is %3.3f cgs unit',k1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.6: The_temperature_of_the_welded_interface.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "k1=0.92;//thermal conductivity of copper in cgs unit\n", "k2=0.5;//thermal conductivity of alluminium in cgs unit\n", "t1=100;//temperature of copper in deg.C\n", "t2=0;//temperature of alluminium in deg.C\n", "\n", "//CALCULATIONS\n", "t=k1*t1/(k1+k2);//welded teperature in deg.C\n", "\n", "//OUTPUT\n", "mprintf('welded temperature is %3.2f deg.C',t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.7: The_conductivity_of_rubber.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "w=23;//thermal capacity of calorimeter in cal\n", "m=440;//mass of water in gm\n", "l=14.6;//lenght of the rubber tube in cm\n", "dt=0.019;//rate of change in temperature in deg.C/sec\n", "t=100;//temperature of steam in deg.C\n", "t1=22;//temperature of the water in deg.C\n", "t2=t1;//temperature of calorimeter in deg.C\n", "r1=1;//external radii in cm\n", "r2=0.75;//internal radii in cm\n", "\n", "//CALCULATIONS\n", "k=(w+m)*dt*log(r1/r2)/(2*3.14*l*(t-((t1+t2)/2)));//thermal conductivity in cgs unit\n", "\n", "//OUTPUT\n", "mprintf('thermal cnductivity of rubber tube is %3.5f cgs unit',k)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.8: Heat_lost_per_hour.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "ti=18;//inside temperature in deg.C\n", "to=4;//outside temperature in deg.C\n", "k1=0.008;//thermal conductivity of stone in cgs unit\n", "k2=0.12;//thermal conductivity of steel in cgs unit\n", "t=3600;//time in sec\n", "t1=25;//thickness of the stone in cm\n", "t2=2;//thickness of the steel in cm\n", "a=10^4;//area of the cottage in sq.cm\n", "\n", "//CALCULATIONS\n", "q1=k1*a*(ti-to)*t/(t1);//heat lost by stone per hour in cal\n", "q2=k2*a*(ti-to)*t/t2;//heat lost by steel per hour in cal\n", "\n", "//OUTPUT\n", "mprintf('heat lost by stone is %3.2f cal \n heat lost by steel is %3.2f cal',q1,q2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.9: The_temperature_of_the_surface.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "\n", "//INPUT\n", "l1=4;//length of the slab1 in cm\n", "l2=2;//length of the slab2 in cm\n", "k1=0.5;//thermal conductivity in cgs unit\n", "k2=0.36;//thermal conductivity in cgs unit\n", "t1=100;//temperature of the slab1 in deg.C\n", "t2=0;//temperature of the slab2 in deg.C\n", "\n", "//CALCULATIONS\n", "t=k1*l2*t1/((k2*l1)+(k1*l2));//temperature of the commaon surface in deg.C\n", "\n", "//OUTPUT\n", "mprintf('the temperature of the common surface is %3.0f deg.C',t)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }