{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: Centrifugal Compressors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.10: Calculation_of_the_torque_power_required_and_the_head_developed.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "m=30; // mass flow rate in kg/s\n", "N=15000; // Speed in rpm\n", "r2=0.3; // Radius in m\n", "D2=r2*2; // Diameter in m\n", "w2=100; // Relative velocity in m/s\n", "beta_1=80; // in degrees\n", "p01=1; // Inlet pressure in bar\n", "T01=300 // Inlet temperature in kelvin\n", "Cp=1.005; // specific heat at constant pressure in kJ/kg K\n", "r=1.4; // Specific heat ratio\n", "R=287; // Characteristic gas constant in J/kg K\n", "\n", "u2=3.14*D2*N/60;\n", "ct2=u2-(w2*cosd (beta_1));\n", "Fr=m*ct2*r2;\n", "P=Fr*(2*3.14*N/60);\n", "W=u2*ct2;\n", "P02=p01*(1+(W*10^-3/(Cp*T01)))^(r/(r-1));\n", "\n", "disp ('Nm',Fr,'Torque = ');\n", "disp ('kW',P/1000,'Power = ');\n", "disp ('bar',P02,'Head Developed = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1: Calculation_of_compressor_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "N=11500; // Speed in rpm\n", "T01=21+273; // Inlet total temperature in kelvin\n", "p01=1;// Inlet total pressure in bar\n", "p02=4;// Outlet total pressure in bar\n", "D=0.75; // impeller diameter in m\n", "mu=0.92;// slip factor\n", "Cp=1.005; // specific heat at constant pressure in kJ/kg K\n", "r=1.4; // Specific heat ratio\n", "\n", "u=3.14*D*N/60;\n", "W=mu*u^2;\n", "T02=W/(Cp*10^3)+T01;\n", "T_02=T01*(p02/p01)^((r-1)/r);\n", "eff_c=(T_02-T01)/(T02-T01);\n", "\n", "disp ('%',eff_c*100,'Efficiency of the compressor = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2: Estimation_of_the_probable_axial_width_of_the_impeller.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "m=35; // mass flow rate of air in kg/s\n", "D=0.76; // Impeller diameter in m\n", "N=11500; // speed in rpm\n", "eff_c=0.8; // Efficiency of the compressor \n", "rp=4.2; // Pressure ratio\n", "cr=120; // Radial velocity in m/s\n", "p01=1; // Inlet pressure in bar\n", "T01=47+273; // Inlet temperature in kelvin\n", "Cp=1.005; // specific heat at constant pressure in kJ/kg K\n", "r=1.4; // Specific heat ratio\n", "R=287; // Characteristic gas constant in J/kg K\n", "\n", "T_02=T01*rp^((r-1)/r);\n", "T02=T01+(T_02-T01)/eff_c;\n", "// ignoring the effects of the velocity of flow\n", "p02=rp/p01;\n", "row2=p02*10^5/(R*T02);\n", "Atip=m/(row2*cr);\n", "AW=Atip/(3.14*D); // Axial width\n", "\n", "disp ('cm',AW*100,'Axial Width = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3: Calculation_of_theoretical_blade_angles.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "D=0.15; // Inlet eye diameter in m\n", "N=20000; // Speed in rpm\n", "ca1=107; // Axial velocity in m/s\n", "T01=294; // Inlet temperature in kelvin\n", "p01=1.03; // Inlet pressure in kg/cm^2\n", "Cp=1.005; // specific heat at constant pressure in kJ/kg K\n", "r=1.4; // Specific heat ratio\n", "R=287; // Characteristic gas constant in J/kg K\n", "\n", "u1=3.14*D*N/60;\n", "beta_1=atand (ca1/u1);// Blade angle \n", "cr=u1/cosd (beta_1);\n", "a=sqrt (r*R*(T01-ca1^2/(2*Cp*10^3)));\n", "M=cr/a; // Mach number at the tip\n", "\n", "disp ('degree',beta_1,'(i).Theoretical angle of the blade at this point = ');\n", "disp (M,'(ii).Mach number of the flow at the tip of the eye = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4: Calculation_of_final_temperature_of_the_gases_and_the_work_done_per_kg_of_gas.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "T01=0+273; // Inlet gas temperature in kelvin\n", "p01=0.7; // Inlet pressure in bar\n", "p02=1.05; // Delivery pressure in bar\n", "eff_c=0.83; // Compressor efficiency\n", "Cp=1.005;// Specific heat at constant pressure in kJ/kg K\n", "Cv=0.717;// Specific heat at constant volume in kJ/kg K\n", "r=1.4; // Specific heat ratio \n", "\n", "T_02=T01*(p02/p01)^((r-1)/r);\n", "T02=T01+(T_02-T01)/eff_c; // Final temperature of the gas\n", "Wc=Cp*(T02-T01); // Work of compression\n", "\n", "// With additional compressor\n", "T_03=T02*(p02/p01)^((r-1)/r);\n", "T03=T02+(T_03-T02)/eff_c; \n", "T_03=T01*(p02/p01)^(2*(r-1)/r);\n", "eff_overall=(T_03-T01)/(T03-T01);\n", "\n", "disp ('K',T02,'Final temperature of the gas = ');\n", "disp ('kJ/kg',Wc,' Work of compression = ');\n", "disp ('%',eff_overall*100,'Overall efficiency = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5: Calculation_of_impeller_diameters_and_the_width_at_the_impeller_exit.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "N=12500; // Speed in rpm\n", "m=15; // Mass flow rate in kg/s\n", "rp=4; // Pressure ratio\n", "eff_c=0.75; // Isentropic efficiency \n", "mu=0.9; // Slip factor\n", "pi=0.3; // Flow coefficient at impeller exit\n", "D=0.15; // Hub diameter in m\n", "ca2=150; // Axial velocity in m/s\n", "T01=275; // Inlet temperature in kelvin\n", "p01=1; // Inlet pressure in bar\n", "Cp=1.005;// Specific heat at constant pressure in kJ/kg K\n", "Cv=0.717;// Specific heat at constant volume in kJ/kg K\n", "r=1.4; // Specific heat ratio \n", "R=287; // Characteristic gas constant in J/kg K\n", "\n", "u2=ca2/pi;\n", "P=m*mu*u2^2/1000; // Power output\n", "D2=u2*60/(3.14*N);\n", "T1=T01-ca2^2/(2*Cp*10^3);\n", "p1=p01*(T1/T01)^(r/(r-1));\n", "row1=p1*10^5/(R*T1);\n", "A1=m/(row1*ca2);\n", "D1=sqrt ((A1*4/(3.14))+D^2);\n", "p3_p1=rp;\n", "p2=2*p1;\n", "T_2=T1*(p2/p1)^((r-1)/r);\n", "T2=T1+(T_2-T1)/eff_c;\n", "row2=p2*10^5/(R*T2);\n", "W2=(m)/(row2*ca2*3.14*D2);\n", "\n", "disp ('kW',P,'Power = ');\n", "disp ('Impeller Diameters');\n", "disp ('cm',D2*100,'D2 = ','cm (roundoff error)',D1*100,'D1 = ');\n", "disp ('Impeller width')\n", "disp ('cm (roundoff error)',W2*100,'W2 = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.6: Calculation_of_the_minimum_possible_depth_of_the_diffuser.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "m=14; // mass flow rate in kg/s\n", "rp=4; // pressure ratio\n", "N=12000; // Speed in rpm\n", "T01=288; // Inlet temperature in kelvin\n", "p01=1.033; // Inlet pressure in bar\n", "Cp=1.005;// Specific heat at constant pressure in kJ/kg K\n", "Cv=0.717;// Specific heat at constant volume in kJ/kg K\n", "r=1.4; // Specific heat ratio \n", "R=287; // Characteristic gas constant in J/kg K\n", "mu=0.9; // Slip factor\n", "chi=1.04; // Power input factor\n", "eff_c=0.8; // Compressor efficiency\n", "\n", "T03=(((rp^((r-1)/r))-1)*T01/eff_c)+T01;;\n", "U=sqrt ((T03-T01)*Cp*10^3/(chi*mu));\n", "D=U*60/(3.14*N);\n", "\n", "T3=T03/1.2;\n", "c2=sqrt (r*R*T3);\n", "ca2=sqrt (c2^2-(mu*U)^2);\n", "T02=eff_c*(T03-T01)+T01;\n", "Loss=T03-T02;\n", "T2=T3-Loss/2\n", "p2=p01*(T2/T01)^(r/(r-1));\n", "row2=p2*10^5/(R*T2);\n", "A=m/(row2*ca2);\n", "Depth=A/(2*3.14*D/2);\n", "\n", "disp ('cm',D*100,'Overall diameter of the Impeller = ');\n", "disp ('cm (roundoff error)',Depth*100,'Depth of the diffuser = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.7: Calculation_of_impeller_and_diffuser_blade_angles_at_inlet.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "N=10000; // Speed in rpm\n", "Q=600; // Flow rate m^2/min\n", "rp=4; // Pressure ratio \n", "eff_c=0.82; // Compressor efficiency\n", "T01=293; // Inlet temperature in kelvin\n", "p01=1.0; // Inlet pressure in bar\n", "Cp=1.005;// Specific heat at constant pressure in kJ/kg K\n", "Cv=0.717;// Specific heat at constant volume in kJ/kg K\n", "r=1.4; // Specific heat ratio \n", "R=287; // Characteristic gas constant in J/kg K\n", "ca=60; // Axial velocity in m/s\n", "D2_D1=2 ;// Diameter ratio\n", "\n", "T_03=T01*rp^((r-1)/r);\n", "T03=T01+(T_03-T01)/eff_c;\n", "u2=sqrt (Cp*10^3*(T03-T01));\n", "Wc=u2^2; // Work of compression\n", "D2=(u2*60/(3.14*N));\n", "D1=D2/D2_D1;\n", "T1=T01-(ca^2/(2-Cp*10^3));\n", "p1=p01*(T1/T01)^(r/(r-1));\n", "row1=p1*10^5/(R*T1);\n", "Wroot=(Q/60)*(1/(ca*3.14*D1));\n", "u1=3.14*N*D1/60;\n", "alpha_root=atand (ca/u1);\n", "alpha_tip= atand (ca/u2);\n", "\n", "disp ('(i).Power input ');\n", "disp ('kW/kg/s',Wc/1000,'Wc = ');\n", "disp ('(ii).Impeller Diameters');\n", "disp ('m',D2,'D2 = ','m',D1,'D1 = ');\n", "disp ('(iii).Impeller and diffuser blade angles at inlet');\n", "disp ('degree',alpha_tip,'alpha_tip = ','degree',alpha_root,'alpha_root = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.8: Calculation_of_slip_factor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "rp=4; // Pressure ratio\n", "eff_c=0.8; // Compressor efficiency \n", "N=15000; // Speed in rpm\n", "T01=293; // Inlet temperature in kelvin\n", "De=0.25; // Diameter of eye in m\n", "C1=150; // Absolute velocity in m/s\n", "Di=0.6; // Impeller diameter in m\n", "a1=25; // in degree\n", "Cp=1.005;// Specific heat at constant pressure in kJ/kg K\n", "Cv=0.717;// Specific heat at constant volume in kJ/kg K\n", "r=1.4; // Specific heat ratio \n", "R=287; // Characteristic gas constant in J/kg K\n", "\n", "T02=T01*rp^((r-1)/r);\n", "DelT_actual=(T02-T01)/eff_c;\n", "P=Cp*10^3*DelT_actual; // Power input\n", "u1=3.14*De*N/60;\n", "ct1=C1*sind (a1);\n", "// At Exit\n", "u2=3.14*Di*N/60;\n", "ct2=(P+(u1*ct1))/u2;\n", "mu=ct2/u2; // Slip factor\n", "\n", "disp (mu,'Slip Factor = ');\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.9: Determination_of_number_of_radial_impeller_vanes.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "P=180*10^3; // Power input in J\n", "N=15000; // Speed in rpm\n", "a1=25; // in degrees\n", "De=0.25; // Mean dia of the eye in m\n", "Di=0.6;// Impeller tip diameter in m\n", "c1=150; // Absolute air velocity at inlet in m/s\n", "\n", "u1=3.14*De*N/60;\n", "u2=3.14*Di*N/60;\n", "ct1=c1*sind (a1);\n", "ct2=(P+(u1*ct1))/u2;\n", "mu=ct2/u2;\n", "z=(1.98)/(1-mu); // Number of impeller vanes\n", "disp(z,'Number of impeller vanes using Stanitz formulae = ');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }