{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.1: I.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "//This numerical is Ex 1_1E,page 9.\n", "Pso=20.5\n", "Psc=20.5*550//converting hp to fps system\n", "Qo=385\n", "Qc=385/449//converting gpm to ft^3/s\n", "E=0.83\n", "dp=E*Psc/(Qc*144)\n", "printf('The pressure rise is %g psi',dp)\n", "disp('After rounding off,pressure rise is 75.8 psi')\n", "dpr=75.8\n", "dHw=75.8*144/62.4//62.4 is accelaration due to gravity in fps system\n", "printf(' The head of water is %g ft of water',dHw)\n", "disp('After rounding off the value of head of water the answer is 175 ft of water.')\n", "dhwr=175//rounded off value of head of water\n", "sg=0.72//specific gravity of oil\n", "dHo=dhwr/sg\n", "printf(' The head of oil is %g ft of oil',dHo)\n", "disp('After rounding off the value of head of oil the answer is 243 ft of oil.')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2: I.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "//This numerical is Ex 1_1S,page 10.\n", "E=0.83//efficiency\n", "Ps=15300\n", "Q=87.4\n", "Qs=87.4/3600//flow rate in meter cube per sec\n", "rho=998\n", "g=9.81\n", "sg=0.72\n", "dp=E*Ps/Qs\n", "printf('\n The change in pressure (dp)is %g',dp)\n", "dpr=523000//rounded value of dp\n", "disp('The rounded off value of dp is 523kPa.')\n", "dHw=dpr/(rho*g)\n", "printf(' dHw is equal to %g m of water',dHw)\n", "disp('The rounded off value of dHw is 53.4 m of water.')\n", "dHwr=53.4//rounded off value of dHw\n", "disp('Thus we can determine head of oil.')\n", "dHoil=dHwr/sg\n", "printf(' dHoil is given by %g m of oil',dHoil)\n", "disp('The rounded off value of dHoil is 74.2 m of oil.')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.3: I.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "//This numerical is Ex 1_2E,page 10.\n", "Q=12000\n", "A=3.5\n", "rho_a=0.0762\n", "E=0.85\n", "r=2.5//resistance of duct system\n", "V=Q/(60*A)\n", "printf('The air flow velocity at discharge is %0.2f ft/s',V)\n", "KE=(rho_a*(V^2))/(32.2*2)\n", "printf('\n The product is %0.2f lb/ft^2',KE)\n", "//PE=KE\n", "Hv=KE/62.4\n", "printf('\n The dynamic head is %0.3f ft',Hv)\n", "disp('The value of dynamic head in inches of water is 0.74.')\n", "Hvi=0.74//Head in inches\n", "Ht=r+Hvi\n", "printf('\n The total head is %0.2f inches of water',Ht)\n", "p_tot=Ht*62.4\n", "Ps=Q*p_tot/(60*12*E)\n", "printf('\n The shaft power is %0.1f ft-lb/s',Ps)\n", "disp('The shaft power is 7.2 hp.')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.4: I.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "//This numerical is Ex 1_2S,page 11.\n", "Q=340\n", "A=0.325\n", "V=Q/(60*A)\n", "printf('The air flow velocity at discharge is %0.1f m/s',V)\n", "rho_a=1.22\n", "Vr=17.4\n", "Hd=(rho_a*(Vr^2))/2\n", "printf('\n The dynamic pressure head is %0.1f Pa',Hd)\n", "Hdr=184.7//rounded off value of Hd\n", "rho_w=998//density of water=rhow\n", "g=9.81\n", "H=0.0635\n", "dp=rho_w*g*H//static pressure head\n", "printf('\n The static pressure head is %0.1f Pa',dp)\n", "dpr=621.7\n", "p_tot=Hdr+dpr\n", "printf('\n The total pressure head is %0.1f Pa',p_tot)\n", "p_tot=806.4\n", "E=0.85//efficiency\n", "Ps=Q*p_tot/(60*E)\n", "printf('\n The shaft power is %g W',Ps)\n", "disp('The shaft power is 5.376 kW.')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.5: I.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "//This numerical is Ex 1_3E,page 11.\n", "H=295//net head in ft\n", "Q=148//water flow rate\n", "n=1800//rpm\n", "E=0.87//efficiency\n", "a=62.4//product of density and accelaration due to gravity\n", "omega=(n*2*%pi)/60\n", "dp=a*H\n", "printf('The pressure is %g lb/ft^2',dp)\n", "Ps=E*Q*dp\n", "printf('\n Output power is equal to %0.3f lb-ft/s',Ps)\n", "disp('The output output power can also be written as 2.37*10^6 lb-ft/s')\n", "disp('Output power in terms of horsepower is given by 4309hp.')\n", "Psr=2370000//rounded off value of Ps\n", "Torque=Psr/omega\n", "printf(' The output torque is %g lb-ft.',Torque)\n", "disp('The output torque can also be written as 12.57*10^3 lb-ft')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.6: I.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "//This numerical is Ex 1_3S,page 12.\n", "H=90\n", "Q=4.2//water flow rate(in m^3/s)\n", "n=1800\n", "E=0.87//efficiency\n", "rho=998\n", "g=9.81\n", "omega=(n*2*%pi)/60\n", "dp=rho*g*H\n", "printf('The pressure is %g N/m^2',dp)\n", "Ps=E*Q*dp\n", "printf('\n Output power is equal to %0.3f N-m/s',Ps)\n", "disp('After rounding off the value of output power is 3220 kW.')\n", "Psr=3220000//rounded off value of Ps\n", "Torque=Psr/omega\n", "printf(' The output torque is %g N-m.',Torque)\n", "disp('After rounding off the output torque comes out to be 17.1*10^3 N-m.')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }