{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 33: Electromagnetic Oscillations and Alternating Current" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.1: Sample_Problem_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "C = 1.5*10^-6 //in F\n", "V = 57 //in volts\n", "L = 12*10^-3 //in H\n", "\n", "//Sample Problem 33-1\n", "printf('**Sample Problem 33-1**\n')\n", "Imax = V*sqrt(C/L)\n", "printf('The maximum current in the circuit is %1.2eA', Imax)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.2: Sample_Problem_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "C = 1.5*10^-6 //in F\n", "V = 57 //in volts\n", "L = 12*10^-3 //in H\n", "\n", "//Sample Problem 33-2a\n", "printf('**Sample Problem 33-2a**\n')\n", "//V(accross Inductor) = V(accross Capacitor)\n", "//-L*(dI/dt) = V\n", "//I = C*(dV/dt)\n", "//L*C*(d^2V/dt^2) = -V\n", "//at t=0, Potential difference = V\n", "w = 1/sqrt(L*C)\n", "printf('The potential defference accross the inductor is V=%d*cos(%d*t)\n', V, w)\n", "\n", "//Sample Problem 33-2b\n", "printf('\n**Sample Problem 33-2b**\n')\n", "MaxRate = abs(-V/L)\n", "printf('The maximum rate of change in current is %1.2famp/s', MaxRate)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.3: Sample_Problem_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "L = 12*10^-3 //in H\n", "C = 1.6*10^-6 //in F\n", "R = 1.5 //in ohm\n", "\n", "//Sample Problem 33-3a\n", "printf('**Sample Probelm 33-3a**\n')\n", "//Q/2 = Q*e^(-R*t/(2*L))\n", "t = -2*L/R*log(0.50)\n", "printf('At time t=%1.2esec, the amplitude of charge oscillation is half of the maximum value\n', t)\n", "\n", "//Sample Problem 33-3b\n", "printf('\n**Sample Probelm 33-3b**\n')\n", "w = 1/sqrt(L*C)\n", "T = (2*%pi)/w\n", "n = t/T\n", "printf('The number of oscillation are %1.2f till t=%1.2e', n, T)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.4: Sample_Problem_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "R = 200 //in Ohm\n", "Em = 36 //in volts\n", "fd = 60 //in Hz\n", "t = poly(0, 't')\n", "w = 2*%pi*fd\n", "//V = Em*sin(w*t)\n", "\n", "//Sample Problem 33-4a\n", "printf('**Sample Problem 33-4a**\n')\n", "//Vr = Emax*sin(w*t)\n", "printf('The voltage drop across the resistor is Vr=%1.2f*sin(%1.2f*t)\n', Em, w)\n", "\n", "//Sample Problem 33-4b\n", "printf('\n**Sample Problem 33-4b**\n')\n", "Ir = Em/R\n", "printf('The current in the resistor as a function of time is Ir=%1.2f*sin(%1.2f*t)', Ir, w)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.5: Sample_Problem_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "C = 15*10^-6 //in Farad\n", "Em = 36.0 //in volts\n", "fd = 60.0 //in Hz\n", "\n", "//Sample Problem 33-5a\n", "printf('**Sample Problem 33-5a**\n')\n", "//Vc = Emax*sin(w*t)\n", "printf('The voltage drop across the capacitor is Vc=%1.2f*sin(%1.2f*t)\n', Em, w)\n", "\n", "//Sample Problem 33-5b\n", "printf('\n**Sample Problem 33-5b**\n')\n", "//I = -C*(dV/dt)\n", "IcMAX = abs(w*C*Em)\n", "printf('The current in the capacitor as a function of time is Ic=%1.2f*cos(%1.2f*t)', IcMAX, w)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.6: Sample_Problem_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "L = 230*10^-3 //in Farad\n", "Em = 36.0 //in volts\n", "fd = 60.0 //in Hz\n", "\n", "//Sample Problem 33-6a\n", "printf('**Sample Problem 33-6a**\n')\n", "//Vc = Emax*sin(w*t)\n", "printf('The voltage drop across the inductor is Vi=%1.2f*sin(%1.2f*t)\n', Em, w)\n", "\n", "//Sample Problem 33-6b\n", "printf('\n**Sample Problem 33-6b**\n')\n", "//V = -L*(dI/dt)\n", "IcMAX = abs(Em/(w*L))\n", "printf('The current in the inductor as a function of time is Ic=-%1.2f*cos(%1.2f*t)', IcMAX, w)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.7: Sample_Problem_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "R = 200 //in ohm\n", "C = 15*10^-6 //in F\n", "L = 230*10^-3 //in H\n", "Em = 36.0 //in volts\n", "fd = 60.0 //in Hz\n", "\n", "//Sample Problem 33-7a\n", "printf('**Sample Problem 33-7a**\n')\n", "w = 2*%pi*fd\n", "Xl = w*L\n", "Xc = 1/(w*C)\n", "Z = sqrt(R^2 + (Xl - Xc)^2)\n", "Imax = Em/Z\n", "printf('The amplitude of current in the circuit is %1.2fA, Imax\n', Imax)\n", "\n", "//Sample Problem 33-7b\n", "printf('\n**Sample Problem 33-7a**\n')\n", "phi = atan((Xl-Xc)/R)\n", "printf('The phase constant is equal to %fdegrees', phi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.8: Sample_Problem_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "Erms = 120 //in volts\n", "fd = 60 //in Hz\n", "R = 200 //in ohm\n", "Xl = 80.0 //in ohm\n", "Xc = 150 //in ohm\n", "\n", "//Sample Problem 33-8a\n", "printf('**Sample Problem 33-8a**\n')\n", "Z = sqrt(R^2 + (Xl - Xc)^2)\n", "pf = R/Z\n", "printf('The power factor for the circuit is %.3f\n', pf)\n", "\n", "//Sample Problem 33-8b\n", "printf('\n**Sample Problem 33-8b**\n')\n", "Irms = Erms/R\n", "Pavg = Erms*Irms*pf\n", "printf('The average rate of disscipation of energy is equal to %1.2fW\n', Pavg)\n", "\n", "//Sample Problem 33-8c\n", "printf('\n**Sample Problem 33-8c**\n')\n", "Xc = Xl\n", "w = 2*%pi*fd\n", "Cnew = 1/Xc/w\n", "printf('The new capacitance should be %1.2eF', Cnew)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 33.9: Sample_Problem_9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "Vp = 8.5*10^3 //in Volts\n", "Vs = 120 //in volts\n", "P = 78*10^3 //in W\n", "\n", "//Sample Problem 33-9a\n", "printf('**Sample Problem 33-9a**\n')\n", "ratio = Vp/Vs\n", "printf('The turn ratio is equal to %.3f\n', ratio)\n", "\n", "//Sample Problem 33-9b\n", "printf('\n**Sample Problem 33-9b**\n')\n", "Is = P/Vs\n", "Ip = P/Vp\n", "printf('The current in primary circuit is %1.2eA\n', Ip)\n", "printf('The current in secondary circuit is %1.2eA\n', Is)\n", "\n", "//Sample Problem 33-9c\n", "printf('\n**Sample Problem 33-9c**\n')\n", "Rs = Vs/Is\n", "Rp = Vp/Ip\n", "printf('The resistance in primary circuit is %1.2eA\n', Rp)\n", "printf('The resistance in secondary circuit is %1.2eA\n', Rs)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }