{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 31: Induction and Inductance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.1: Sample_Problem_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "i = 1.5 //in A\n", "D = 3.2*10^-2 //in meter\n", "N = 220/10^-2 //in turns/m\n", "n = 130\n", "d = 2.1*10^-2 //in meter\n", "deltaT = 25*10^-3 //in s\n", "uo = 4*%pi*10^-7 //in SI unit\n", "\n", "//Sample Problem 31-1\n", "printf('**Sample Problem 31-1**\n')\n", "A = %pi*(d/2)^2\n", "deltaPhi = uo*N*i*A\n", "E = n*deltaPhi/deltaT\n", "printf('The emf induced is equal to %eV', E)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.2: Sample_Problem_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "r = 0.20 //in meter\n", "t = poly(0, 't')\n", "B = 4.0*t^2 + 2.0*t + 3.0\n", "E = 2.0 //in Volts\n", "R = 2 //in Ohm\n", "\n", "//Sample Problem 31-2a\n", "printf('**Sample Problem 31-2a**\n')\n", "t = 10 //in sec\n", "flux = B*%pi*r^2/2\n", "Et = derivat(flux)\n", "E1 = horner(Et, t)\n", "printf('The Emf induced is equal to %fV\n', E1)\n", "\n", "//Sample Problem 31-2b\n", "printf('\n**Sample Problem 31-2b**\n')\n", "I = (E1-E)/R\n", "printf('The induced current is equal to %fA', I)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.3: Sample_Problem_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "t = poly(0, 't')\n", "//B = 4*t^2*x^2\n", "W = 3.0 //in meter\n", "H = 2.0 //in meter\n", "t1 = 0.10 //in sec\n", "\n", "//Sample Problem 31-3\n", "printf('**Sample Problem 31-3**\n')\n", "flux = integrate('4*x^2*H', 'x', 0, W)\n", "E = derivat(flux*t^2)\n", "E1 = horner(E, t1)\n", "printf('The induced emf is equal to %fV', E1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.4: Sample_Problem_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "R = 8.5*10^-2 //in meter\n", "Rb = 0.13 //in T/s\n", "r = 5.2*10^-2 //in meter\n", "\n", "//Sample Problem 31-4a\n", "printf('**Sample Problem 31-4a**\n')\n", "//Using Faraday's law\n", "Rf = Rb*%pi*r^2\n", "E = Rf/(2*%pi*r)\n", "printf('The induced electric field is equal to %eV/m\n', E)\n", "\n", "//Sample Problem 31-4b\n", "printf('\n**Sample Problem 31-4b**\n')\n", "r = 12.5*10^-2 //in meter\n", "Rf = Rb*%pi*R^2\n", "E = Rf/(2*%pi*r)\n", "printf('The induced electric field is equal to %eV/m', E)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.5: Sample_Problem_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "R = 9.0 //in Ohm\n", "L = 2*10^-3 //in Henery\n", "E = 18 //in Volts\n", "\n", "//Sample Problem 31-5a\n", "printf('**Sample Problem 31-5a**\n')\n", "//As soon as switch is closed the inductor will act like current barrier\n", "Io = E/R\n", "printf('The current as soon as qwitch is closed is equal to %1.2fA\n', Io)\n", "\n", "//Sample Problem 31-5b\n", "printf('\n**Sample Problem 31-5b**\n')\n", "//After long time inductor will act like short circuit\n", "Req = R/3\n", "If = E/(R/3)\n", "printf('The current through the battery after long time will be %1.2fA', If)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.6: Sample_Problem_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "L = 53*10^-3 //in H\n", "R = 0.37 //in Ohm\n", "\n", "//Sample Problem 31-6\n", "printf('**Sample Problem 31-6**\n')\n", "//i = io(1-e^(t/T))\n", "//ln2 = t/T\n", "T = L/R\n", "t = T*log(2)\n", "printf('The time taken to rach the current to half of its stedy state value is %fs', t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.7: Sample_Problem_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "L = 53*10^-3 //in H\n", "R = 0.35 //in Ohm\n", "V = 12 //in Volts\n", "\n", "//Sample Problem 31-7a\n", "printf('**Sample Problem 31-7a**\n')\n", "i = V/R //in steady state\n", "E = 1/2*L*i^2\n", "printf('The Energy stored in the inductor in steady state is %fJ\n', E)\n", "\n", "//Sample Problem 31-7b\n", "printf('\n**Sample Problem 31-7b**\n')\n", "Et = E/2\n", "//hence It = Io/sqrt(2)\n", "f = log(1-1/sqrt(2)) //the number of times of time constant\n", "printf('After t=%1.1fT, the energy stored in the inductor will be half of tis steady state value', f)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.8: Sample_Problem_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "a = 1.2*10^-3 //in meter\n", "b = 3.5*10^-3 //in meter\n", "i = 2.7 //in Amp\n", "l = 1 //in meter(say)\n", "uo = 4*%pi*10^-7\n", "\n", "//Sample Problem 31-8\n", "printf('**Sample Problem 31-8**\n')\n", "B = uo*i/(2*%pi) //divided by r\n", "Ul = B^2/(2*uo) //divided by r^2\n", "//Energy as a funtion of r\n", "U = Ul*2*%pi*l //divided by r by r\n", "Energy = integrate('U/r', 'r', a, b)\n", "printf('Energy per unit length is equal to %1.2eJ/m', Energy)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 31.9: Sample_Problem_9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "N1 = 1200 //turns\n", "N2 = N1\n", "R2 = 1.1*10^-2 //in meter\n", "R1 = 15*10^-2 //in meter\n", "uo = 4*%pi*10^-7\n", "\n", "//Sample Problem 31-9\n", "printf('**Sample Problem 31-9**\n')\n", "//let's assume\n", "i = 1 //in amp\n", "B1 = uo*N1*i/(2*R1)\n", "phi2 = B1*%pi*R2^2*N2\n", "M = phi2/i\n", "printf('The mutual inductance of the two coil is equal to %1.2eH', M)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }