{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15: Psychrometrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.1: Calculations_on_atmospheric_air.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Ps = 0.033363; P = 1.0132;\n", "W2 = (0.622*Ps)/(P-Ps);\n", "hfg2 = 2439.9; hf2 = 109.1; cpa = 1.005;\n", "hg = 2559.9; hw1 = hg;\n", "T2 = 25+273; T1 = 32+273;\n", "W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2);\n", "Pw = ((W1/0.622)*P)/(1+(W1/0.622));\n", "disp('kg vap./kg dry air',W1,'Specific humidity is')\n", "disp('bar',Pw,'Partial pressure of water vapour is')\n", "disp('degree',24.1,'Dew point temperature is') // saturation temperature at 0.03 bar\n", "Psat = 0.048; // at 32 degree\n", "fi = Pw/Psat;\n", "disp('%',fi*100,'Relative humidity is')\n", "mu = (Pw/Ps)*((P-Ps)/(P-Pw));\n", "disp(mu,'Degree of saturation is')\n", "Pa = P-Pw;\n", "Ra = 0.287; Tab = T1;\n", "rho_a = (Pa*100)/(Ra*Tab);\n", "disp('kg/m3',rho_a,'Density of dry air is')\n", "rho_w = W1*rho_a;\n", "disp('kg/m3',rho_w,'Density of water vapour is')\n", "ta = 32; tdb = 32; tdp = 24.1;\n", "h = cpa*ta + W1*(hg+1.88*(tdb-tdp));\n", "disp('kJ/kg',h,'Enthalpy of the mixture is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2: Calculating_the_humidity_of_air_water_mixture.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Ps = 2.339; P = 100;\n", "W2 = (0.622*Ps)/(P-Ps);\n", "hfg2 = 2454.1; hf2 = 83.96; cpa = 1.005;\n", "hw1 = 2556.3;\n", "T2 = 20; T1 = 30;\n", "W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2);\n", "Pw1 = ((W1/0.622)*P)/(1+(W1/0.622));\n", "Ps1 = 4.246;\n", "fi = (Pw1/Ps1);\n", "disp('%',fi*100,'Relative humidity is')\n", "disp('kg vap./kg dry air',W1,'Humidity ratio of inlet mixture is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3: Calculations_on_air_temperature_and_mass_of_water.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Psat = 2.339;\n", "fi3 = 0.50;\n", "P = 101.3; cp = 1.005;\n", "Pw3 = fi3*Psat;\n", "Pa3 = P-Pw3;\n", "W3 = 0.622*(Pw3/Pa3);\n", "Psa1_1 = 0.7156;\n", "Pw1 = 0.7156;\n", "Pa1 = P-Pw1;\n", "W1 = 0.622*(Pw1/Pa1); W2 = W1;\n", "T3 = 293; Ra = 0.287; Pa3 = 100.13;\n", "va3 = (Ra*T3)/Pa3;\n", "SW = (W3-W1)/va3;\n", "t3 = 20; tsat = 9.65; hg = 2518; h4 = 10;\n", "t2 = ( W3*(hg+1.884*(t3-tsat))-W2*(hg-1.884*tsat) + cp*t3 - (W3-W2)*h4 )/ (cp+W2*1.884)\n", "disp('kg moisture/m3',SW,'Mass of spray water required is')\n", "disp('degree',t2,'Temperature to which air must be heated is')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.4: Calculations_on_an_air_conditioning_system.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "h1 = 82; h2 = 52; h3 = 47; h4 = 40;\n", "W1 = 0.020; W2 = 0.0115; W3 = W2;\n", "v1 = 0.887;\n", "v = 3.33; // amount of free sir circulated\n", "G = v/v1;\n", "CC = (G*(h1-h3)*3600)/14000; // in tonns\n", "R = G*(W1-W3);\n", "disp('tonnes',CC,'Capacity of the cooling coil in tonnes')\n", "disp('kg/s',R,'Rate of water vapour removed is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.5: Calculation_on_air_mixed_with_RH.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "W1 = 0.0058; W2 = 0.0187; \n", "h1 = 35; h2 = 90;\n", "G12 = 1/2; // G12 = G1/G2 \n", "W3 = (W2+G12*W1)/(1+G12);\n", "h3 = (2/3)*h2 + (1/3)*h1;\n", "disp('Final condition of air is given by')\n", "disp('kg vap./kg dry air',W3,'W3 = ')\n", "disp('kJ/kg dry air',h3,'h3 = ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.7: Calculation_on_the_airconditioning_of_a_hall.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "h1 = 57; h2 = h1;\n", "h3 = 42;\n", "W1 = 0.0065; W2 = 0.0088; W3 = W2;\n", "t2 = 34.5; v1 = 0.896;\n", "n = 1500; // seating capacity of hall\n", "a = 0.3; // amount of out door air suplied\n", "G = (n*a)/0.896 ; // Amount of dry air suplied\n", "CC = (G*(h2-h3)*60)/14000; // in tonns\n", "R = G*(W2-W1)*60;\n", "disp('tonnes',CC,'Capacity of the cooling coil in tonnes')\n", "disp('kg/h',R,'Capacity of humidifier')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.8: Calculations_on_water_into_a_cooling_tower.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "twb1 = 15.2; twb2 = 26.7; tw3 = 30;\n", "h1 = 43; h2 = 83.5; hw = 84; mw = 1.15;\n", "W1 = 0.0088; W2 = 0.0213;\n", "hw3 = 125.8; hm = 84;\n", "G = 1;\n", "hw34 = (G/mw)*((h2-h1)-(W2-W1)*hw); // hw3-hw4\n", "tw4 = tw3-(hw34/4.19);\n", "A = tw4-twb1;\n", "R = tw3-tw4;\n", "x = G*(W2-W1);\n", "disp('degree',tw4,'Temperature of water leaving the tower is')\n", "disp('kg/kg dry sir',x,'Fraction of water evoporated is')\n", "disp('degree',R,'Range of cooling water is')\n", "disp('degree',A,'Approach of cooling water is')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.9: Calculations_on_air_flow_rate_into_a_cooling_tower.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Psat1 = 0.01705; hg1 = 2528.9; // at 15 degree\n", "Psat2 = 0.05628; hg2 = 2565.3; // At 35 degree\n", "fi1 = 0.55;\n", "Pw1 = fi1*Psat1;\n", "fi2 = 1;\n", "Pw2 = fi2*Psat2;\n", "P = 1;\n", "W1 = (0.622*Pw1)/(P-Pw1);\n", "W2 = (0.622*Pw2)/(P-Pw2);\n", "MW = W2-W1;\n", "t2 = 35; t1 = 15; \n", "m_dot = 2.78;\n", "cpa = 1.005;\n", "h43 = 35*4.187; // h4-h3\n", "h5 = 14*4.187;\n", "m_dot_w = (-(W2-W1)*h5 - W1*hg1 + W2*hg2 + cpa*(t2-t1))/(h43) ;\n", "R = m_dot/m_dot_w ;\n", "MW = (W2-W1)*R;\n", "RWA = R*(1+W1);\n", "R = 0.287; T = 288; \n", "V_dot = (RWA*R*T)/(P*1e02) ; // Pressure is in kilo Pascal\n", "disp('kg/s',MW,'Make up water flow rate is')\n", "disp('m3/s',V_dot,'Volume flow rate of air is')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }