{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: Laser" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1: EX8_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex8.1:: Page-8.8 (2009)\n", "clc; clear;\n", "lambda = 31235; // Wavelength of prominent emission of laser, aangstrom\n", "E = 12400/lambda; // Energy difference between the two levels, eV\n", "\n", "printf('\nThe difference between upper and lower energy levels for the most prominent wavelength = %5.3f eV', E);\n", "\n", "// Result \n", "// The difference between upper and lower energy levels for the most prominent wavelength = 0.397 eV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2: Frequency_and_wavelength_of_carbon_dioxide_laser.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex8.2:: Page-8.8 (2009)\n", "clc; clear;\n", "E = 0.121; // Energy difference between the two levels, eV\n", "lambda = 12400/E; // Wavelength of the radiation, angstrom\n", "f = 3e+08/(lambda*1e-010); // Frequency of the radiation, Hz\n", "\n", "printf('\nThe wavelength of the radiation = %8.1f angstrom', lambda);\n", "printf('\nThe frequency of the radiation = %4.2e Hz', f);\n", "\n", "// Result \n", "// The wavelength of the radiation = 102479.3 angstrom\n", "// The frequency of the radiation = 2.93e+13 Hz " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3: Energy_of_one_emitted_photon_and_total_energy_available_per_laser_pulse.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex8.3:: Page-8.8 (2009)\n", "clc; clear;\n", "lambda = 7000; // Wavelength of the Ruby laser, angstrom\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", "N = 2.8e+019; // Total number of photons\n", "E = 12400/lambda; // Energy of one emitted photon, eV\n", "E_p = E*e*N; // Total energy available per laser pulse, joule\n", "\n", "printf('\nThe energy of one emitted photon = %4.2e J', E*e);\n", "printf('\nThe total energy available per laser pulse = %4.2f joule', E_p);\n", "\n", "// Result \n", "// The energy of one emitted photon = 2.83e-19 J\n", "// The total energy available per laser pulse = 7.94 joule " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4: Relative_population_of_levels_in_Ruby_laser.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex8.4:: Page-8.9 (2009)\n", "clc; clear;\n", "lambda = 7000; // Wavelength of the emitted light, angstrom\n", "k = 8.6e-005; // Boltzmann constant, eV/K\n", "dE = 12400/lambda; // Energy difference of the levels, eV\n", "T = [300 500]; // Temperatures of first and second states, K\n", "for i = 1:1:2\n", " N2_ratio_N1 = exp(-(dE/(k*T(i)))); // Relative population\n", " printf('\nThe relative population at %d K = %3.1e', T(i), N2_ratio_N1);\n", "end\n", "\n", "// Result \n", "// The relative population at 300 K = 1.5e-30\n", "// The relative population at 500 K = 1.3e-18 \n", "// The answer is given wrong in the textbook for first part." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5: Population_of_two_states_in_He_Ne_laser.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex8.5:: Page-8.9 (2009)\n", "clc; clear;\n", "lambda = 7000; // Wavelength of the emitted light, angstrom\n", "k = 8.6e-005; // Boltzmann constant, eV/K\n", "dE = 12400/lambda; // Energy difference of the levels, eV\n", "T = 27+273; // Temperatures of the state, K\n", "N2_ratio_N1 = exp(-(dE/(k*T))); // Relative population\n", "printf('\nThe relative population of two states in He-Ne laser at %d K = %3.1e', T, N2_ratio_N1);\n", "\n", "\n", "// Result \n", "// The relative population of two states in He-Ne laser at 300 K = 1.5e-30 \n", "// The answer is given wrong in the textbook" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }