{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: Nuclear Physics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1: Mass_defect_of_He.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.1 :: Page-5.2 (2009)\n", "clc;clear;\n", "m_p = 1.007826; // Mass of a proton, amu\n", "m_n = 1.008665; // Mass of a neutron, amu\n", "M_He = 4.002604; // Measured mass of He nucleuc, amu\n", "delta_m = 2*m_p+2*m_n - M_He; // Mass defect of He, amu\n", "printf('\nThe mass defect of He = %f amu', delta_m);\n", "\n", "// Result\n", "// The mass defect of He = 0.030378 amu " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3: Maximum_energy_of_proton_in_a_cyclotron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.3 :: Page-5.16 (2009)\n", "clc;clear;\n", "B = 0.70; // Magnetic field of cyclotron, weber/metre square\n", "q = 1.6e-019; // Charge of the proton, C\n", "R = 3; // Radius of Dee's, m\n", "m = 1.67e-027; // Mass of the proton, kg\n", "E_max = B^2*q^2*R^2/(2*m); // Maximum energy of the proton in the cyclotron, joule\n", "printf('\nThe maximum energy of the proton in the cyclotron = %4.2e MeV', E_max/1.6e-013);\n", "\n", "// Result\n", "// The maximum energy of the proton in the cyclotron = 2.11e+02 MeV \n", "// The unit has been given wrong in the textbook. It should be MeV instead of eV" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4: Energy_of_an_electron_in_a_betatron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.4 :: Page-5.20 (2009)\n", "clc;clear;\n", "f = 1e+06; // Frequency of revolution of electron, Hz\n", "rate_phi_B = 25; // Rate of change of magnetic flux, wb/s\n", "E = f*rate_phi_B; // Energy of 'f' revolutios, eV\n", "printf('\nThe energy of the electron in Betatron after %g revolutions = %3.1e eV', f, E);\n", "\n", "// Result\n", "// The energy of the electron in Betatron after 1e+06 revolutions = 2.5e+07 eV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5: Final_energy_gained_by_electrons_in_a_betatron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.5 :: Page-5.20 (2009)\n", "clc;clear;\n", "e = 1.6e-019; // Charge on an electron, C\n", "D = 2.0; // Diameter of the stable orbit in betatron, m\n", "R = D/2; // Radius of the stable orbit in betatron, m\n", "B = 0.5; // Magnetic field of betatron, wb/metre square\n", "c = 3e+08; // final speed of electron in betatron, m/s\n", "E = B*e*R*c; // Final energy gained by electrons in a betatron, eV\n", "printf('\nThe final energy gained by electrons in the betatron = %3.1e eV', E/e);\n", "\n", "// Result\n", "// The final energy gained by electrons in the betatron = 1.5e+08 eV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6: Energy_produced_in_fission_of_U235.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.6 :: Page-5.27 (2009)\n", "clc;clear;\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", "A = 235; // Atomic weight of uranium, gm/mol\n", "N_A = 6.023e+026; // No. of atoms present in 235 kg of uranium\n", "N = N_A/(A*1000); // No. of nuceli of uranium per gram\n", "E = N*200; // Energy produced by 1 g of U-235, MeV\n", "printf('\nThe energy produced by 1 g of U-235 = %3.1e joule', E*e*1e+06);\n", "\n", "// Result\n", "// The energy produced by 1 g of U-235 = 8.2e+10 joule " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.7: Power_output_of_nuclear_reactor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.7 :: Page-5.32 (2009)\n", "clc;clear;\n", "A = 235; // Atomic weight of uranium, gm/mol\n", "N_A = 6.023e+026; // No. of atoms present in 235 kg of uranium-235\n", "N = N_A*5/A; // No. of nuceli of uranium in 5 kg of U-235\n", "E = N*200; // Energy released in the fission of 5 kg of U-235, MeV\n", "t = 24*3600; // Time taken to consume 5 kg of U-235, sec\n", "P = E/t; // Total power output of the nuclear reactor, MeV per second\n", "printf('\nThe total power output of the nuclear reactor = %4.2e MeV per second', P);\n", "\n", "// Result\n", "// The total power output of the nuclear reactor = 2.97e+22 MeV per second " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.8: Average_current_in_the_GM_counter_circuit.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.8 :: Page-5.34 (2009)\n", "clc;clear;\n", "e = 1.6e-019; // Electronic charge, C\n", "f = 450; // Count rate of GM counter, counts/min\n", "N = f*1e+08; // Total number of electrons collected per min\n", "Q = N*e; // Charge collected per min, C\n", "I = Q/60; // Averge current in the GM counter, A\n", "printf('\nThe averge current in the GM counter= %3.1e A', I);\n", "\n", "// Result\n", "// The averge current in the GM counter= 1.2e-10 A " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.9: Energy_needed_to_remove_a_neutron_from_Ca_nucleus.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.9 :: Page-5.39 (2009)\n", "clc;clear;\n", "m_Ca_41 = 40.962278; // Mass of one Ca-41 nuclei, amu\n", "m_Ca_42 = 41.958618; // Mass of one Ca-41 nuclei, amu\n", "m_n = 1.008665; // Mass of a neutron, amu\n", "delta_m = m_Ca_42 - (m_Ca_41 + m_n); // Difference in the mass of Ca-42 and Ca_41 nuclei, amu\n", "E = delta_m*(931.49); // Binding energy of the missing neutron, MeV\n", "printf('\nThe energy needed to remove a neutron from Ca-42 nucleus = %5.2f MeV', abs(E));\n", "\n", "// Result\n", "// The energy needed to remove a neutron from Ca-42 nucleus = 11.48 MeV " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }