{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 7: Magnetic properties" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.10: relative_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "B=1.4; //flux density(Wb/m**2)\n", "B0=6.5*10**-4; //magnetic field(Tesla)\n", "\n", "//Calculation\n", "mewr=B/B0; //relative permeability\n", "\n", "//Result\n", "printf('relative permeability is %0.3f \n',(mewr))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.1: magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "chi=-0.4*10**-5; //magnetic susceptibility\n", "H=5*10**5; //magnetic field(A/m)\n", "mew0=4*%pi*10**-7; \n", "\n", "//Calculation\n", "B=mew0*H*(1+chi); //flux density(Wb/m**2)\n", "M=chi*H; //magnetic moment(A/m)\n", "\n", "//Result\n", "printf('flux density is %0.3f Wb/m**2 \n',(B))\n", "printf('magnetic moment is %0.3f A/m \n',M)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.2: flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "chi=-0.25*10**-5; //magnetic susceptibility\n", "H=1000; //magnetic field(A/m)\n", "mew0=4*%pi*10**-7; \n", "\n", "//Calculation\n", "M=chi*H; //magnetisation(A/m)\n", "B=mew0*(H+M); //flux density(Wb/m**2)\n", "\n", "//Result\n", "printf('magnetisation is %0.3f *10**-2 A/m \n',M*10**2)\n", "printf('flux density is %0.3f *10**-3 Wb/m**2 \n',(B*10**3))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3: magnetisation_and_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "H=250; //magnetic field(A/m)\n", "mewr=15; //relative permeability\n", "mew0=4*%pi*10**-7; \n", "\n", "//Calculation\n", "M=H*(mewr-1); //magnetisation(A/m)\n", "B=mew0*(H+M); //flux density(Wb/m**2)\n", "\n", "//Result\n", "printf('magnetisation is %0.3f A/m \n',M)\n", "printf('flux density is %0.3f *10**-3 Wb/m**2 \n',(B*10**3))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.4: magnetisation_and_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "chi=-0.42*10**-3; //magnetic susceptibility\n", "H=1000; //magnetic field(A/m)\n", "mew0=4*%pi*10**-7; \n", "\n", "//Calculation\n", "M=chi*H; //magnetisation(A/m)\n", "B=mew0*(H+M); //flux density(Wb/m**2)\n", "\n", "//Result\n", "printf('magnetisation is %0.3f A/m \n',M)\n", "printf('flux density is %0.3f *10**-3 Wb/m**2 \n',(B*10**3))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.5: magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "r=10/2; //radius(cm)\n", "i=500*10**-3; //current(A)\n", "\n", "//Calculation\n", "mew=%pi*(r*10**-2)**2*i; //magnetic moment(Am**2)\n", "\n", "//Result\n", "printf('magnetic moment is %0.3f *10**-3 Am**2 \n',(mew*10**3))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.6: magnetizing_force_and_relative_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "mew0=4*%pi*10**-7; \n", "B=0.0044; //flux density(Wb/m**2)\n", "M=3300; //magnetic moment(A/m)\n", "\n", "//Calculation\n", "H=(B/mew0)-M; //magnetizing force(A/m)\n", "mewr=1+(M/H); //relative permeability\n", "\n", "//Result\n", "printf('magnetizing force is %0.3f A/m \n',int(H))\n", "printf('relative permeability is %0.3f \n',(mewr))\n", "printf('answer varies due to approximating off errors\n')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.7: change_in_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "r=0.052*10**-9; //radius(m)\n", "B=3; //flux density(Wb/m**2)\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "\n", "//Calculation\n", "delta_mew=e**2*r**2*B/(4*m); //change in magnetic moment(A m**2)\n", "\n", "//Result\n", "printf('change in magnetic moment is %0.3f *10**-29 Am**2 \n',(delta_mew*10**29))\n", "printf('answer given in the book is wrong\n')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.8: change_in_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "r=5.29*10**-11; //radius(m)\n", "B=2; //flux density(Wb/m**2)\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "\n", "//Calculation\n", "d_mew=e**2*r**2*B/(4*m); //change in magnetic moment(A m**2)\n", "\n", "//Result\n", "printf('change in magnetic moment is %0.3f *10**-29 Am**2 \n',(d_mew*10**29))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.9: susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "N=10**28; //number of atoms(per m**3)\n", "chi1=2.8*10**-4; //susceptibility\n", "T1=350; //temperature(K)\n", "T2=300; //temperature(K)\n", "\n", "//Calculation\n", "chi2=chi1*T1/T2; //susceptibility\n", "\n", "//Result\n", "printf('susceptibility is %0.3f *10**-4 \n',(chi2*10**4))" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }