{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: PRINCIPLES OF QUANTUM MECHANICS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.10: energy_value_in_states.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Variable declaration\n", "n=1;\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "L=2*10**-10; //width(m)\n", "\n", "//Calculation\n", "E1=n**2*h**2/(8*m*e*L**2); //energy value in g state(eV)\n", "E2=2**2*E1; //energy value in 2nd quantum state(eV)\n", "E4=4**2*E1; //energy value in 2nd quantum state(eV)\n", "\n", "//Result\n", "printf('energy value in 2nd quantum state is %0.3f \n',(E2))\n", "printf('energy value in 4th quantum state is %0.3d eV\n ',(E4))\n", "printf('answer varies due to approximating off errors\n')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.11: interplanar_spacing.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "V=344; //potemtial(V)\n", "n=1;\n", "theta=60; //angle(degrees)\n", "\n", "//Calculation\n", "theta=theta*%pi/180; //angle(radian)\n", "d=n*h/(2*sin(theta)*sqrt(2*m*V*e)); //interplanar spacing(m)\n", "\n", "//Result\n", "printf('interplanar spacing is %0.3f angstrom \n',(d*10**10))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.12: energy_required_to_pump_an_electron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "n=1;\n", "e=1.6*10**-19; \n", "m=9.11*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "L=1*10**-10; //width(m)\n", "\n", "//Calculation\n", "E1=n**2*h**2/(8*m*e*L**2); //energy value in g state(eV)\n", "E3=3**2*E1; //energy value in 2nd quantum state(eV)\n", "E=E3-E1; //energy required to pump an electron(eV)\n", "\n", "//Result\n", "printf('energy required to pump an electron is %0.3f eV \n',(E))\n", "printf('answer varies due to approximating off errors\n')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.13: minimum_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "n=1;\n", "e=1.6*10**-19; \n", "m=9.11*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "L=2*10**-10; //width(m)\n", "\n", "//Calculation\n", "E1=n**2*h**2/(8*m*e*L**2); //energy value in g state(eV)\n", "\n", "//Result\n", "printf('minimum energy is %0.3f eV \n',(E1))\n", "printf('answer varies due to approximating off errors\n')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.14: wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "V=1600; //voltage(V)\n", "\n", "//Calculation\n", "lamda=1.227/sqrt(V); //wavelength(nm)\n", "\n", "//Result\n", "printf('wavelength is %0.3f angstrom \n',(lamda*10))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1: wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "E=2000; //energy(eV)\n", "\n", "//Calculation\n", "lamda=h/sqrt(2*m*E*e); //wavelength(m)\n", "\n", "//Result\n", "printf('wavelength is %0.4f nm\n ',(lamda*10**9))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2: velocity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.626*10**-34; //planck's constant\n", "lamda=1.66*10**-10; //wavelength(m)\n", "\n", "//Calculation\n", "v=h/(m*lamda); //velocity(m/s)\n", "E=h**2/(2*m*e*lamda**2); //kinetic energy(eV)\n", "\n", "//Result\n", "printf('velocity is %0.3f *10**4 m/s \n',(v/10**4))\n", "printf('answer varies due to approximating off errors\n')\n", "printf('kinetic energy is %0.3f eV \n',(E))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3: nergy_value_in_states.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "n=1;\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "L=1*10**-10; //width(m)\n", "\n", "//Calculation\n", "E1=n**2*h**2/(8*m*e*L**2); //energy value in ground state(eV)\n", "E2=4*E1; //energy value in 1st state(eV)\n", "E3=9*E1; //energy value in 2nd state(eV)\n", "\n", "//Result\n", "printf('energy value in ground state is %0.4f eV',(E1))\n", "printf('\nenergy value in 1st state is %0.2f eV',(E2))\n", "printf('\nenergy value in 2nd state is %0.4f eV',(E3))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.4: minimum_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "n=1;\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "L=4*10**-10; //width(m)\n", "\n", "//Calculation\n", "E1=n**2*h**2/(8*m*e*L**2); //energy value in g state(eV)\n", "\n", "//Result\n", "printf('minimum energy is %0.3f eV \n',(E1))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.5: wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Variable declaration\n", "V=15*10**3; //voltage(V)\n", "\n", "//Calculation\n", "lamda=1.227/sqrt(V); //wavelength(nm)\n", "\n", "//Result\n", "printf('wavelength is %0.3f nm \n',(lamda))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6: minimum_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Variable declaration\n", "n=1;\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "L=0.05*10**-9; //width(m)\n", "\n", "//Calculation\n", "E1=n**2*h**2/(8*m*e*L**2); //energy value in g state(eV)\n", "\n", "//Result\n", "printf('minimum energy is %0.3f eV \n',(E1))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.8: minimum_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Variable declaration\n", "n=1;\n", "e=1.6*10**-19; \n", "m=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "L=3*10**-10; //width(m)\n", "\n", "//Calculation\n", "E1=n**2*h**2/(8*m*e*L**2); //energy value in g state(eV)\n", "\n", "//Result\n", "printf('minimum energy is %0.3f eV \n',(E1))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.9: de_broglie_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Variable declaration\n", "me=1.676*10**-27; //mass(kg) \n", "mn=9.1*10**-31; //mass(kg)\n", "h=6.63*10**-34; //planck's constant\n", "\n", "//Calculation\n", "lamda_n=h/sqrt(4*mn*me); //de broglie wavelength(m)\n", "\n", "//Result\n", "printf('de broglie wavelength is %0.3f nm \n',int(lamda_n*10**9))" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }