{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 18: MAGNETIC PROPERTIES OF SOLIDS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.10: Calculation_of_Number_of_ampere_turns.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "l = 1 // length of iron rod in m\n", "a = 4e-4 // area in m^2\n", "mu = 50e-4 // permeability of iron in H/m\n", "Phi = 4e-4 // magnetic flux in Weber\n", "// Sample Problem 10 on page no. 18.24\n", "printf('\n # PROBLEM 10 # \n')\n", "printf('Standard formula used \n ')\n", "printf('B = mu*N*I \n')\n", "B = Phi / a\n", "NI = B / mu\n", "printf('\n Number of ampere turns is %d A/m. ',NI)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.11: Calculation_of_Current_through_the_winding.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "n = 200 // no. of turns \n", "l = 0.5 // the mean length of iron wire in m\n", "phi = 4e-4 // magnetic flux in Weber\n", "a = 4e-4 // area of cross section in m^2\n", "mu = 6.5e-4 // permeability of iron in wb/Am\n", "mu_ = 4 * %pi * 1e-7 // magnetic permeability of space\n", "// Sample Problem 11 on page no. 18.25\n", "printf('\n # PROBLEM 11 # \n')\n", "printf('Standard formula used \n ')\n", "printf('B = mu*N*I \n')\n", "B = phi / a\n", "N = n / l\n", "I = B / (mu * N)\n", "printf('\n Current through the winding is %f A. ',I)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.12: Calculation_of_Radius_of_atom.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "X = -5.6e-6 // magnetic susceptibility of material\n", "a = 2.55e-10 // lattice constant in m\n", "H = 1e4 // magnetic field in A/m\n", "mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space\n", "m = 9.1e-31 // mass of electron in kg\n", "e = 1.6e-19 // charge in an electron in C\n", "// Sample Problem 12 on page no. 18.25\n", "printf('\n # PROBLEM 12 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' Chi = mu_0*Z*e^2 *N*R^2 /(6*m) \n')\n", "N = 2 / a^3\n", "z = 1 \n", "R = ((-X * 6 * m) / (mu_ * z * e^2 * N))^(1/2)\n", "printf('\n Radius of atom is %f A.',R * 1e10)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.13: Calculation_of_Susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "N = 6.5e25 // no. of atom per m^3\n", "T = 300 // room temperature in K\n", "mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space\n", "k = 1.38e-23 // Boltzmann's constant in J/K\n", "m = 9.1e-31 // mass of electron in kg\n", "e = 1.6e-19 // charge in an electron in C\n", "h = 6.62e-34 // Planck constant in J sec\n", "// Sample Problem 13 on page no. 18.25\n", "printf('\n # PROBLEM 13 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' Chi = mu_0*N*M^2 /(3*k*t) \n')\n", "M = (e * h) / (4 * %pi * m)\n", "X = (mu_ * N * M^2) / (3 * k * T)\n", "printf('\n Susceptibility is %e',X)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.14: Calculation_of_Magnetization.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "w = 168.5 // molecular weight \n", "d = 4370 // density of material in kg/m^3\n", "H = 2e5 // magnetic field in A/m\n", "T = 300 // room temperature in K\n", "mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space]\n", "NA = 6.02e26 // Avogadro no. in per kg\n", "mu_b = 9.24e-24 // Bohr magnetons in Am^2\n", "k = 1.38e-23 // Boltzmann's constant in J/K\n", "// Sample Problem 14 on page no. 18.26\n", "printf('\n # PROBLEM 14 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' Chi = mu_0*N*M^2 /(3*k*t) \n')\n", "N = d * NA / w\n", "X = (mu_ * N * (2 * mu_b)^2) / (3 * k * T)\n", "I = X * H\n", "printf('\n Magnetisation is %f A/m',I)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.15: Calculation_of_Total_loss_of_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that\n", "A = 2500 // area of hysteresis loop \n", "m = 10000 // weight in kg\n", "d = 7.5 // density of material in g/cm^3\n", "f = 50 // frequency in Hz\n", "// Sample Problem 15 on page no. 18.26\n", "printf('\n # PROBLEM 15 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' M = V*d \n')\n", "E = f * A * 3600\n", "V = m / d\n", "L = E * V\n", "printf('\n Total loss of energy per hour is %e ergs.',L)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.16: Calculation_of_Current_in_solenoid.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that\n", "H = 5e3 // coercivity in A/m\n", "l = 0.10 // length of solenoid in m\n", "n = 50 // no. of turns \n", "// Sample Problem 16 on page no. 18.27\n", "printf('\n # PROBLEM 16 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' H=N*i \n')\n", "N = n / l\n", "i = H / N\n", "printf('\n Current in solenoid should be %d A.',i)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.17: Calculation_of_Number_of_turns.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that\n", "l = 0.50 // length of iron rod in m\n", "a = 4e-4 // area of cross section of rod in m^2\n", "mu = 65e-4 // permeability of iron in H/m\n", "fi = 4e-5 // flux in weber \n", "// Sample Problem 17 on page no. 18.27\n", "printf('\n # PROBLEM 17 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' N =H*l \n')\n", "B = fi / a\n", "H = B / mu\n", "N = H * l\n", "printf('\n Number of turns are %f',N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.18: Calculation_of_Permeability_and_Susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that\n", "H = 600 // magnetic flux in A/m\n", "a = 0.2e-4 // area of cross section of rod in m^2\n", "phi = 2.4e-5 // flux in weber \n", "mu_ = 4*%pi * 1e-7 // permeability of space in N/A^2\n", "// Sample Problem 18 on page no. 18.27\n", "printf('\n # PROBLEM 18 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' mu_r = 1 + Chi \n')\n", "B = phi / a\n", "mu = B / H\n", "X = mu / mu_ - 1\n", "printf('\n Permeability is %f N/A^2.\n Susceptibility is %f.',mu,X)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.19: Calculation_of_Relative_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that\n", "X = 9.5e-9 // susceptibility of medium \n", "mu_ = 4*%pi * 1e-7 // permeability of space in N/A^2\n", "// Sample Problem 19 on page no. 18.28\n", "printf('\n # PROBLEM 19 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' mu_r = 1 + Chi \n')\n", "mu = mu_ * (1 + X)\n", "mu_r = mu / mu_\n", "printf('\n Relative permeability is 1 + %e',mu_r -1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.1: Calculation_of_Magnetic_moment_and_Bohr_magneton.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "r = 0.53e-10 // radius of orbit in m\n", "f = 6.6e15 // frequency of revolution in Hz\n", "h = 6.6e-34 // Planck constant in J sec\n", "e = 1.6e-19 // charge on an electron in C\n", "m = 9.1e-31 // mass of electron in kg\n", "// Sample Problem 1 on page no. 18.21\n", "printf('\n # PROBLEM 1 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' M = I*a \n')\n", "M = e * f * %pi * r^2\n", "mu = (e * h) / (4 * %pi * m) \n", "printf('\n Magnetic moment is %e Am^2.\n Bohr magneton is %e J/T.',M,mu)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.20: Calculation_of_Energy_loss.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that\n", "a = 250 // area of the B-H loop in J/m^3\n", "f = 50 // frequency in Hz\n", "d = 7.5e3 // density of iron in kg/m^3\n", "m = 100 // mass of core in kg\n", "// Sample Problem 20 on page no. 18.28\n", "printf('\n # PROBLEM 20 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' M = V*d \n')\n", "V = m / d\n", "n = 3600 * f\n", "A = a * V * n\n", "printf('\n Energy loss per hour is %e J.',A)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.21: Calculation_of_Hysteresis_loss.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that\n", "B_max = 1.375 // maximum value of B in Wb/m^2\n", "a = 0.513 // area of the loop in cm^2\n", "k = 1000 // value of 1 cm on x axis in A/m\n", "k_ = 1 // value of 1 cm on y axis in Wb/m^2\n", "B = 1.375 // alternating magnetic flux density in Wb/m^2\n", "v = 1e-3 // volume of specimen in m^3\n", "f = 50 // frequency in Hz\n", "// Sample Problem 21 on page no. 18.28\n", "printf('\n # PROBLEM 21 # \n')\n", "printf('Standard formula used \n K = a * k * k_.\n')\n", "K = a * k * k_\n", "L = K * v * f\n", "printf('\n Hysteresis loss per sec is %f W',L)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.2: Calculation_of_Magnetization_and_Flux_density_and_Relative_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "X = -4.2e-6 // magnetic susceptibility\n", "H = 1.19e5 // magnetic field in A/m\n", "mu_ = 4 * %pi * 1e-7 // magnetic permeability of space\n", "// Sample Problem 2 on page no. 18.21\n", "printf('\n # PROBLEM 2 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' I = cai*H \n')\n", "I = X * H\n", "B = mu_ * (H + I)\n", "mur = (1 + I/H)\n", "printf('\n Magnetisation is %f A/m.\n Flux density is %f T.\n Relative permeability is %f .',I,B,mur)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.3: Calculation_of_Percentage_increase_in_magnetic_induction.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "X = 1.2e-5 // magnetic susceptibility of magnesium\n", "// Sample Problem 3 on page no. 18.22\n", "printf('\n # PROBLEM 3 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' B = mu_0*H \n')\n", "p = 100 * X\n", "printf('\n Percentage increase in magnetic induction is %f percent.',p)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.4: Calculation_of_Magnetization_and_Magnetic_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "X = -0.4e-5 // magnetic susceptibility of material\n", "H = 1e4 // magnetic field in A/m\n", "mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space\n", "// Sample Problem 4 on page no. 18.22\n", "printf('\n # PROBLEM 4 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' I = Chi *H \n')\n", "I = X * H\n", "B = mu_ * (H + I)\n", "printf('\n Magnetisation is %f A/m.\n Magnetic flux density is %f T.',I,B)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.5: Calculation_of_Permeability_of_aluminium.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "X = 2.3e-5 // magnetic susceptibility of aluminium\n", "mu_ = 4 * %pi * 1e-7 // magnetic permeability of space\n", "// Sample Problem 5 on page no. 18.23\n", "printf('\n # PROBLEM 5 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' mu_r = 1 + Chi \n')\n", "mur = 1 + X\n", "mu = mu_ * mur\n", "printf('\n Permeability of aluminium is %e N/A^2.',mu)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.6: Calculation_of_Absolute_permeability_and_Relative_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "X = 9.4e-2 // magnetic susceptibility\n", "mu_ = 4 * %pi * 1e-7 // magnetic permeability of space\n", "// Sample Problem 6 on page no. 18.23\n", "printf('\n # PROBLEM 6 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' mu_r = 1 + Chi \n')\n", "mu_r = 1 + X\n", "mu = mu_ * mu_r\n", "printf('\n Absolute permeability is %e N/A^2.\n Relative permeability is %f.',mu,mu_r)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.7: Calculation_of_Magnetic_susceptibility_and_Relative_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "mu = 0.126 // maximum value of the permeability in N/A^2\n", "mu_ = 4 * %pi * 1e-7 // magnetic permeability of space\n", "// Sample Problem 7 on page no. 18.23\n", "printf('\n # PROBLEM 7 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' mu_r = 1 + Chi \n')\n", "mu_r = mu / mu_\n", "X = mu_r - 1\n", "printf('\n Magnetic susceptibility is %f .\n Relative permeability is %e',X,mu_r)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.8: Calculation_of_Diamagnetic_susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "r = 0.6e-10 // radius of the atom\n", "N = 28e26 // no. of electron in per m^3\n", "mu_ = 4 * %pi * 1e-7 // magnetic permeability of space\n", "Z = 2 // atomic no. of helium\n", "m = 9.1e-31 // mass of an electron in kg\n", "e = 1.6e-19 // charge on an electron in C\n", "// Sample Problem 8 on page no. 18.24\n", "printf('\n # PROBLEM 8 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' Chi = mu_0*Z*e^2 *N*R^2 /(6*m) \n')\n", "Chi = -(mu_ * Z * N * r^2 * e^2) / (6 * m)\n", "printf('\n Diamagnetic susceptibility is %e .',Chi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.9: Calculation_of_Permeability_and_Susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc \n", "// Given that \n", "H = 1e3 // magnetisation field in A/m\n", "phi = 2e-5 // magnetic flux in Weber\n", "a = 0.2e-4 // area of cross section in m^2\n", "mu_ = 4 * %pi * 1e-7 // magnetic permeability of space\n", "// Sample Problem 9 on page no. 18.24\n", "printf('\n # PROBLEM 9 # \n')\n", "printf('Standard formula used \n ')\n", "printf(' mu_r = 1 + Chi \n')\n", "B = phi / a\n", "mu = B / H\n", "X = mu / mu_ - 1\n", "printf('\n Permeability is %e N/A^2.\n Susceptibility is %f .',mu,X)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }