{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: INTERFERENCE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.10: Shift_in_movable_mirror_of_Michelson_Interferometer.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.10 : Page-73 (2010)\n", "lambda1 = 5896e-008; // Wavelength of D1 line of sodium, m\n", "lambda2 = 5890e-008; // Wavelength of D2 line of sodium, m\n", "lambda = (lambda1+lambda2)/2;\n", "// As lambda1 - lambda2 = lambda^2/(2*x), solving for x\n", "x = lambda^2/(2*(lambda1 - lambda2)); // Shift in movable mirror of Michelson Interferometer, cm\n", "printf('\nThe shift in movable mirror = %5.3f mm', x/1e-001);\n", "\n", "// Result \n", "// The shift in movable mirror = 0.289 mm " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Wavelength_of_Light_using_Young_Double_Slit_experiment.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.1 : Page-71 (2010)\n", "beta = 0.51e-02; // Fringe width, cm\n", "d = 2.2e-02; // Distance between the slits, cm\n", "D = 2e+02; // Distance between the slits and the screen, cm\n", "// As beta = D*lambda/d, solving for lambda\n", "lambda = beta*d/D; // Wavelength of light, m\n", "printf('\nThe wavelength of light = %4d angstrom', lambda/1e-010);\n", "\n", "// Result \n", "// The wavelength of light = 5610 angstrom " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Fringe_shift_due_to_change_in_wavelength.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.2 : Page-71 (2010)\n", "lambda1 = 4250e-010; // First wavelength emitted by source of light, m\n", "lambda2 = 5050e-010; // Second wavelength emitted by source of light, m\n", "D = 1.5; // Distance between the source and the screen, m\n", "d = 0.025e-03; // Distance between the slits, m\n", "n = 3; // Number of fringe from the centre\n", "x3 = n*lambda1*D/d; // Position of third bright fringe due to lambda1, m\n", "x3_prime = n*lambda2*D/d; // Position of third bright fringe due to lambda2, m\n", "printf('\nThe separation between the third bright fringe due to the two wavelengths = %4.2f cm', (x3_prime - x3)/1e-02);\n", "\n", "// Result \n", "// The separation between the third bright fringe due to the two wavelengths = 1.44 cm " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: Refractive_index_from_double_slit_experiment.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.3 : Page-71 (2010)\n", "lambda = 5.5e-05; // Wavelength emitted by source of light, cm\n", "n = 4; // Number of fringes shifted\n", "t = 3.9e-04; // Thickness of the thin glass sheet, cm\n", "mu = n*lambda/t+1; // Refractive index of the sheet of glass\n", "printf('\nThe refractive index of the sheet of glass = %6.4f', mu);\n", "\n", "// Result \n", "// The refractive index of the sheet of glass = 1.5641 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: Interference_by_thin_soap_film.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.4 : Page-72 (2010)\n", "lambda = 5893e-010; // Wavelength of monochromatic lihgt used, m\n", "n = 1; // Number of fringe for the least thickness of the film\n", "r = 0; // Value of refraction angle for normal incidence, degrees\n", "mu = 1.42; // refractive index of the soap film\n", "// As for constructive interference, \n", "// 2*mu*t*cos(r) = (2*n-1)*lambda/2, solving for t\n", "t = (2*n-1)*lambda/(4*mu*cos(r)); // Thickness of the film that appears bright, m\n", "printf('\nThe thickness of the film that appears bright = %6.1f angstrom', t/1e-010);\n", "// As for destructive interference, \n", "// 2*mu*t*cos(r) = n*lambda, solving for t\n", "t = n*lambda/(2*mu*cos(r)); // Thickness of the film that appears bright, m\n", "printf('\nThe thickness of the film that appears dark = %4d angstrom', t/1e-010);\n", "\n", "// Result \n", "// The thickness of the film that appears bright = 1037.5 angstrom\n", "// The thickness of the film that appears dark = 2075 angstrom " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Interference_due_to_thin_air_wedge.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.5 : Page-72 (2010)\n", "lambda = 5893e-008; // Wavelength of monochromatic lihgt used, m\n", "n = 10; // Number of fringe that are found in the distnace of 1 cm\n", "d = 1; // Distance of 10 fringes, cm\n", "beta = d/n; // Fringe width, cm\n", "theta = lambda/(2*beta); // Angle of the wedge, rad\n", "printf('\nThe angle of the wedge = %5.3e rad', theta);\n", "\n", "// Result \n", "// The angle of the wedge = 2.946e-004 rad " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6: Separation_between_consecutive_bright_fringes_formed_by_an_air_wedge.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.6 : Page-72 (2010)\n", "lambda = 5900e-008; // Wavelength of monochromatic lihgt used, m\n", "t = 0.010e-01; // Spacer thickness, cm\n", "l = 10; // Wedge length, cm\n", "theta = t/l; // Angle of the wedge, rad\n", "beta = lambda/(2*theta); // Fringe width, cm\n", "printf('\nThe separation between consecutive bright fringes = %5.3e cm', beta);\n", "\n", "// Result \n", "// The separation between consecutive bright fringes = 2.950e-001 cm " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.7: Newton_Rings_by_reflected_light.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.7 : Page-72 (2010)\n", "D4 = 0.4; // Diameter of 4th dark ring, cm\n", "D12 = 0.7; // Diameter of 12th dark ring, cm\n", "// We have dn_puls_k^2-Dn^2 = 4*k*R*lambda, so\n", "// D12^2-D4^2 = 32*R*lambda and D20^2-D12^2 = 32*R*lambda for k = 8, solving for D20\n", "D20 = sqrt(2*D12^2-D4^2); // Diameter of 20th dark ring, cm\n", "printf('\nThe diameter of 20th dark ring = %6.4f cm', D20);\n", "\n", "// Result \n", "// The diameter of 20th dark ring = 0.9055 cm " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.8: Refractive_index_from_Newton_Rings_arrangement.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.8 : Page-73 (2010)\n", "Dn = 0.30; // Diameter of nth dark ring with air film, cm\n", "dn = 0.25; // Diameter of nth dark ring with liquid film, cm\n", "mu = (Dn/dn)^2; // Refractive index of the liquid\n", "printf('\nThe refractive index of the liquid = %4.2f', mu);\n", "\n", "// Result \n", "// The refractive index of the liquid = 1.44 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.9: Wavelength_of_light_using_Michelson_Interferometer.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex3.9 : Page-73 (2010)\n", "x = 0.002945; // Distance through which movable mirror is shifted, cm\n", "N = 100; // Number of fringes shifted\n", "lambda = 2*x/N; // Wavelength of light, m\n", "printf('\nThe wavelength of light = %4d angstrom', lambda/1e-008);\n", "\n", "// Result \n", "// The wavelength of light = 5890 angstrom" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }