{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15: THERMAL PROPERTIES" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.1: Debye_temperature_of_aluminium.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex15.1: Page-323 (2010)\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "h = 6.626e-034; // Planck's constant, Js\n", "f_D = 64e+011; // Debye frequency for Al, Hz\n", "theta_D = h*f_D/k; // Debye temperature, K\n", "printf('\nThe Debye temperature of aluminium = %5.1f K', theta_D);\n", "\n", "// Result\n", "// The Debye temperature of aluminium = 307.3 K " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2: Lattice_specific_heat_of_carbo.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex15.2: Page-323 (2010)\n", "N = 6.02e+026; // Avogadro's number, per kmol\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "h = 6.626e-034; // Planck's constant, Js\n", "f_D = 40.5e+012; // Debye frequency for Al, Hz\n", "T = 30; // Temperature of carbon, Ks\n", "theta_D = h*f_D/k; // Debye temperature, K\n", "C_l = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice specific heat of carbon, J/k-mol/K\n", "printf('\nThe lattice specific heat of carbon = %4.2f J/k-mol/K', C_l);\n", "\n", "// Result\n", "// The lattice specific heat of carbon = 7.13 J/k-mol/K " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3: Einstein_frequency_for_Cu.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex15.3: Page-323 (2010)\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "h = 6.626e-034; // Planck's constant, Js\n", "theta_E = 1990; // Einstein temperature of Cu, K\n", "f_E = k*theta_E/h; // Einstein frequency for Cu, K\n", "printf('\nThe Einstein frequency for Cu = %4.2e Hz', f_E);\n", "printf('\nThe frequency falls in the near infrared region');\n", "\n", "// Result\n", "// The Einstein frequency for Cu = 4.14e+013 Hz\n", "// The frequency falls in the near infrared region " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.4: Electronic_and_lattice_heat_capacities_for_Cu.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex15.4: Page-323 (2010)\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", "N = 6.02e+023; // Avogadro's number, per mol\n", "T = 0.05; // Temperature of Cu, K\n", "E_F = 7; // Fermi energy of Cu, eV\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "h = 6.626e-034; // Planck's constant, Js\n", "theta_D = 348; // Debye temperature of Cu, K\n", "C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Cu, J/mol/K\n", "C_V = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice heat capacity of Cu, J/mol/K\n", "printf('\nThe electronic heat capacity of Cu = %4.2e J/mol/K', C_e);\n", "printf('\nThe lattice heat capacity of Cu = %4.2e J/mol/K', C_V);\n", "\n", "// Result\n", "// The electronic heat capacity of Cu = 2.53e-005 J/mol/K\n", "// The lattice heat capacity of Cu = 5.76e-009 J/mol/K " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.5: Einstein_lattice_specific_heat.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex15.5: Page-324 (2010)\n", "T = 1; // For simplicity assume temperature to be unity, K\n", "R = 1; // For simplicity assume molar gas constant to be unity, J/mol/K\n", "theta_E = T; // Einstein temperature, K\n", "C_V = 3*R*(theta_E/T)^2*exp(theta_E/T)/(exp(theta_E/T)-1)^2; // Einstein lattice specific heat, J/mol/K\n", "printf('\nThe Einstein lattice specific heat, C_v = %4.2f X 3R', C_V/3);\n", "\n", "// Result\n", "// The Einstein lattice specific heat, C_v = 0.92 X 3R" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.6: Molar_electronic_heat_capacity_of_zinc.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex15.6: Page-324 (2010)\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", "v = 2; // Valency of Zn atom\n", "N = v*6.02e+023; // Avogadro's number, per mol\n", "T = 300; // Temperature of Zn, K\n", "E_F = 9.38; // Fermi energy of Zn, eV\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "h = 6.626e-034; // Planck's constant, Js\n", "C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat capacity of Zn, J/mol/K\n", "printf('\nThe molar electronic heat capacity of zinc = %5.3f J/mol/K', C_e);\n", "\n", "// Result\n", "// The molar electronic heat capacity of zinc = 0.226 J/mol/K " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }