{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 14: MAGNETIC PROPERTIES OF MATERIALS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.1: Spontaneous_magnetisation_of_the_substance.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex14.1: Spontaneous magnetisation of the substance: Page-306 (2010)\n", "N = 6.023e+023; // Avogadro's number. per mole\n", "A = 56; // Atomic weight of the substance, g/mole\n", "d = 7.9; // Density of the substance, gram per cm cube\n", "m_B = 9.27e-024; // Bohr's Magneton, joule per tesla\n", "m = 2.2*m_B; // Magnetic moment of substance, joule per tesla\n", "n = d*N/A*1e+006; // Number of atoms per unit volume of the substance, per metre cube\n", "M = n*m; // Spontaneous magnetisation of the substance, ampere per metre\n", "printf('\nThe spontaneous magnetisation of the substance = %4.2e ampere per metre', M);\n", "\n", "// Result\n", "// The spontaneous magnetisation of the substance = 1.73e+006 ampere per metre " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.2: Relative_permeability_of_ferromagnetic_material.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex14.2: Relative permeability of ferromagnetic material : Page-307 (2010)\n", "H = 200; // Field strength to which the ferromagnetic material is subjected, ampere per metre\n", "M = 3100; // Magnetisation of the ferromagnetic material, ampere per metre\n", "chi = M/H; // Magnetic susceptibility\n", "mu_r = 1 + chi; // Relative permeability of ferromagnetic material\n", "printf('\nThe relative permeability of ferromagnetic material = %4.1f', mu_r);\n", "\n", "// Result\n", "// The relative permeability of ferromagnetic material = 16.5 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.3: Relative_permeability_from_magnetisation.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex14.3: Relative permeability from magnetisation : Page-307 (2010)\n", "H = 300; // Field strength to which the ferromagnetic material is subjected, ampere per metre\n", "M = 4400; // Magnetisation of the ferromagnetic material, ampere per metre\n", "chi = M/H; // Magnetic susceptibility\n", "mu_r = 1 + chi; // Relative permeability of ferromagnetic material\n", "printf('\nThe relative permeability of ferromagnetic material = %5.2f', mu_r);\n", "\n", "// Result\n", "// The relative permeability of ferromagnetic material = 15.67 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.4: Magnetic_flux_density_and_magnetisation_of_diamagnetic_material.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex14.4: Magnetic flux density and magnetisation of diamagnetic material : Page-307 (2010)\n", "mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n", "H = 10000; // Field strength to which the diamagnetic material is subjected, ampere per metre\n", "chi = -0.4e-005; // Magnetic susceptibility\n", "M = chi*H; // Magnetisation of the diamagnetic material, ampere per metre\n", "B = mu_0*(H + M); // Magnetic flux density of diamagnetic material, T\n", "printf('\nThe magnetisation of diamagnetic material = %4.2f ampere per metre', M);\n", "printf('\nThe magnetic flux density of diamagnetic material = %6.4f T', B);\n", "\n", "// Result\n", "// The magnetisation of diamagnetic material = -0.04 ampere per metre\n", "// The Magnetic flux density of diamagnetic material = 0.0126 T " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.5: EX14_5.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex14.5: Magnetisation-Magnetic flux density-relative permeability of diamagnetic material : Page-307 (2010)\n", "mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n", "H = 1.2e+005; // Field strength to which the diamagnetic material is subjected, ampere per metre\n", "chi = -4.2e-006; // Magnetic susceptibility\n", "M = chi*H; // Magnetisation of the diamagnetic material, ampere per metre\n", "B = mu_0*(H + M); // Magnetic flux density of diamagnetic material, T\n", "mu_r = M/H + 1; // The relative permeability of diamagnetic material\n", "printf('\nThe magnetisation of diamagnetic material = %5.3f ampere per metre', M);\n", "printf('\nThe magnetic flux density of diamagnetic material = %5.3f T', B);\n", "printf('\nThe relative permeability of diamagnetic material = %f T', mu_r);\n", "// Result\n", "// The magnetisation of diamagnetic material = -0.504 ampere per metre\n", "// The magnetic flux density of diamagnetic material = 0.151 T \n", "// The relative permeability of diamagnetic material = 0.999996 T " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.6: Mean_radius_of_body_centered_cubic_structure.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex14.6: Mean radius of body centered cubic structure: Page-308 (2010)\n", "chi = 5.6e-006; // Magnetic susceptibility of diamagnetic material\n", "m = 9.1e-031; // Mass of an electron, kg\n", "mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n", "Z = 1; /// Atomic number\n", "e = 1.6e-019; // Electronic charge, C\n", "a = 2.53e-010; // Lattice parameter of bcc structure, m\n", "N = 2/a^3; // The number of electrons per unit volume, per metre cube\n", "r = sqrt(chi*6*m/(mu_0*Z*e^2*N)); // Mean radius of body centered cubic structure as per Langevin relation for Diamagnetic susceptibility, m\n", "printf('\nThe mean radius of body centered cubic structure = %5.3e angstrom', r/1e-010);\n", "\n", "// Result\n", "// The mean radius of body centered cubic structure = 8.773e-001 angstrom" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.7: Susceptibility_and_magnetisation_of_paramagnetic_salt.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex14.7: Susceptibility and magnetisation of paramagnetic salt: Page-308 (2010)\n", "mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere\n", "N_A = 6.02e+026; // Avogadro's number, per kmol\n", "rho = 4370; // Density of paramegnetic salt, kg per metre cube\n", "M = 168.5; // Molecular weight of paramagnetic salt, g/mol\n", "T = 27+273; // Temperature of paramagnetic salt, K\n", "H = 2e+005; // Field strength to which the paramagnetic salt is subjected, ampere per metre\n", "mu_B = 9.27e-024; // Bohr's magneton, ampere metre square\n", "p = 2; // Number of Bohr magnetons per molecule\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "N = rho*N_A/M; // Total density of atoms in the paramagnetic salt, per metr cube\n", "chi = mu_0*N*p^2*mu_B^2/(3*k*T); // Magnetic susceptibility of paramagnetic salt\n", "M = chi*H; // Magnetisation of paramagnetic salt, ampere per metre\n", "printf('\nThe magnetic susceptibility of paramagnetic salt = %4.2e per metre', chi);\n", "printf('\nThe magnetisation of paramagnetic salt = %4.2e ampere per metre', M);\n", "\n", "// Result\n", "// The magnetic susceptibility of paramagnetic salt = 5.43e-004 per metre\n", "// The magnetisation of paramagnetic salt = 1.09e+002 ampere per metre" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }