{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13: DIELECTRIC PROPERTIES OF MATERIALS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1: Electronic_Polarizability_of_atom.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex13.1: Electronic Polarizability of atom : Page-287 (2010)\n", "epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", "R = 0.52e-010; // Radius of hydrogen atom, angstrom\n", "n = 9.7e+026; // Number density of hydrogen, per metre cube\n", "alpha_e = 4*%pi*epsilon_0*R^3; // Electronic polarizability of hydrogen atom, farad-metre square\n", "printf('\nThe electronic polarizability of hydrogen atom = %4.2e farad-metre square', alpha_e);\n", "\n", "// Result\n", "// The electronic polarizability of hydrogen atom = 1.56e-041 farad-metre square" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2: Parallel_plate_capacitor.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex13.2: Parallel plate capacitor: Page-287 (2010)\n", "epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", "A = 100e-004; // Area of a plate of parallel plate capacitor, metre square\n", "d = 1e-002; // Distance between the plates of the capacitor, m\n", "V = 100; // Potential applied to the plates of the capacitor, volt\n", "C = epsilon_0*A/d; // Capacitance of parallel plate capacitor, farad\n", "Q = C/V; // Charge on the plates of the capacitor, coulomb\n", "printf('\nThe capacitance of parallel plate capacitor = %5.3e F', C);\n", "printf('\nThe charge on the plates of the capacitor = %5.3e C', Q);\n", "\n", "// Result\n", "// The capacitance of parallel plate capacitor = 8.854e-012 F\n", "// The charge on the plates of the capacitor = 8.854e-014 C" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3: Dielectric_displacement_of_medium.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex13.3: Dielectric displacement of medium: Page-288 (2010)\n", "epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", "epsilon_r = 5.0; // Dielectric constant of the material between the plates of capacitor\n", "V = 15; // Potential difference applied between the plates of the capacitor, volt\n", "d = 1.5e-003; // Separation between the plates of the capacitor, m\n", "// Electric displacement, D = epsilon_0*epsilon_r*E, as E = V/d, so \n", "D = epsilon_0*epsilon_r*V/d; // Dielectric displacement, coulomb per metre square\n", "printf('\nThe dielectric displacement = %5.3e coulomb per metre square', D);\n", "\n", "// Result\n", "// The dielectric displacement = 4.427e-007 coulomb per metre square " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.4: Relative_dielectric_constant.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex13.4: Relative dielectric constant : Page-288 (2010)\n", "epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", "N = 3.0e+028; // Number density of solid elemental dielectric, atoms per metre cube\n", "alpha_e = 1e-040; // Electronic polarizability, farad metre square\n", "epsilon_r = 1 + N*alpha_e/epsilon_0; // Relative dielectric constant of the material\n", "printf('\nThe Relative dielectric constant of the material = %5.3f', epsilon_r);\n", "\n", "// Result\n", "// The Relative dielectric constant of the material = 1.339 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.5: Atomic_polarizability_of_sulphur.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex13.5: Atomic polarizability of sulphur : Page-288 (2010)\n", "N_A = 6.023e+023; // Avogadro's number, per mole\n", "epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", "epsilon_r = 3.75; // Relative dielectric constant\n", "d = 2050; // Density of sulphur, kg per metre cube\n", "y = 1/3; // Internal field constant\n", "M = 32; // Atomic weight of sulphur, g/mol\n", "N = N_A*1e+03*d/M; // Number density of atoms of sulphur, per metre cube\n", "// Lorentz relation for local fields give\n", "// E_local = E + P/(3*epsilon_0) which gives\n", "// (epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", "alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*epsilon_0/N; // Electronic polarizability of sulphur, farad metre square\n", "printf('\nThe electronic polarizability of sulphur = %5.3e farad metre square', alpha_e);\n", "\n", "// Result\n", "// The electronic polarizability of sulphur = 3.292e-040 farad metre square" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.6: Electronic_polarizability_from_refractive_index.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex13.6: Electronic polarizability from refractive index : Page-289 (2010)\n", "N = 3e+028; // Number density of atoms of dielectric material, per metre cube\n", "epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre\n", "n = 1.6; // Refractive index of dielectric material\n", "// As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0), solving for alpha_e\n", "alpha_e = (n^2 - 1)/(n^2 + 2)*3*epsilon_0/N; // Electronic polarizability of dielectric material, farad metre square\n", "printf('\nThe electronic polarizability of dielectric material = %4.2e farad metre square', alpha_e);\n", "\n", "// Result\n", "// The electronic polarizability of dielectric material = 3.03e-040 farad metre square " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.7: Ratio_of_electronic_polarizability_to_ionic_polarizability.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex13.7: Ratio of electronic polarizability to ionic polarizability: Page-289 (2010)\n", "epsilon_r = 4.9; // Absolute relative dielectric constant of material, farad per metre\n", "n = 1.6; // Refractive index of dielectric material\n", "// As (n^2 - 1)/(n^2 + 2)*(alpha_e + alpha_i)/alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r - 1)/(epsilon_r + 2), solving for alpha_i/alpha_e\n", "alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n^2 + 2)/(n^2 - 1) - 1)^(-1); // Ratio of electronic polarizability to ionic polarizability\n", "printf('\nThe ratio of electronic polarizability to ionic polarizability = %4.2f', alpha_ratio);\n", "\n", "// Result\n", "// The ratio of electronic polarizability to ionic polarizability = 1.53 " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }