{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 12: HOLOGRAPHY AND FIBRE OPTICS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.1: Parameters_of_step_index_fibre.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex12.1: Parameters of step index fibre : Page-271 (2010)\n", "n1 = 1.43; // Refractive index of fibre core\n", "n2 = 1.4; // Refractive index of fibre cladding\n", "// As sin (alpha_c) = n2/n1, solving for alpha_c\n", "alpha_c = asind(n2/n1); // Critical angle for optical fibre, degrees\n", "// AS cos(theta_c) = n2/n1, solving for theta_c\n", "theta_c = acosd(n2/n1); // Critical propagation angle for optical fibre, degrees\n", "NA = sqrt(n1^2 - n2^2); // Numerical aperture for optical fibre\n", "printf('\nThe critical angle for optical fibre = %5.2f degrees', alpha_c);\n", "printf('\nThe critical propagation angle for optical fibre = %5.2f degrees', theta_c);\n", "printf('\nNumerical aperture for optical fibre = %4.2f', NA);\n", "\n", "// Result\n", "// The critical angle for optical fibre = 78.24 degrees\n", "// The critical propagation angle for optical fibre = 11.76 degrees\n", "// Numerical aperture for optical fibre = 0.29 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.2: Parameters_of_optical_fibre.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex12.2: Parameters of optical fibre : Page-271 (2010)\n", "n1 = 1.45; // Refractive index of fibre core\n", "n2 = 1.4; // Refractive index of fibre cladding\n", "NA = sqrt(n1^2 - n2^2); // Numerical aperture for optical fibre\n", "// As sin(theta_a) = sqrt(n1^2 - n2^2), solving for theta_a\n", "theta_a = asind(sqrt(n1^2 - n2^2)); // Half of acceptance angle of optical fibre, degrees\n", "theta_accp = 2*theta_a; // Acceptance angle of optical fibre\n", "Delta = (n1 - n2)/n1; // Relative refractive index difference\n", "printf('\nNumerical aperture for optical fibre = %5.3f', NA);\n", "printf('\nThe acceptance angle of optical fibre = %4.1f degrees', theta_accp);\n", "printf('\nRelative refractive index difference = %5.3f', Delta);\n", "\n", "// Result\n", "// Numerical aperture for optical fibre = 0.377\n", "// The acceptance angle of optical fibre = 44.4 degrees\n", "// Relative refractive index difference = 0.034 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.3: Numerical_aperture_and_acceptance_angle_of_step_index_fibre.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex12.3: Numerical aperture and acceptance angle of step index fibre : Page-271 (2010)\n", "n1 = 1.55; // Refractive index of fibre core\n", "n2 = 1.53; // Refractive index of fibre cladding\n", "n0 = 1.3; // Refractive index of medium\n", "NA = sqrt(n1^2 - n2^2); // Numerical aperture for optical fibre\n", "// n0*sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving for theta_a\n", "theta_a = asind(sqrt(n1^2 - n2^2)/n0); // Half of acceptance angle of optical fibre, degrees\n", "theta_accp = 2*theta_a; // Acceptance angle of optical fibre\n", "printf('\nNumerical aperture for step index fibre = %5.3f', NA);\n", "printf('\nThe acceptance angle of step index fibre = %2d degrees', theta_accp);\n", "\n", "// Result\n", "// Numerical aperture for step index fibre = 0.248\n", "// The acceptance angle of step index fibre = 22 degrees " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.5: Output_power_in_fibre_optic_communication.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex12.5: Output power in fibre optic communication : Page-272 (2010)\n", "alpha = 2; // Power loss through optical fibre, dB/km\n", "P_in = 500; // Poer input of optical fibre, micro-watt\n", "z = 10; // Length of the optical fibre, km\n", "// As alpha = 10/z*log10(P_in/P_out), solving for P_out\n", "P_out = P_in/10^(alpha*z/10); // Output power in fibre optic communication, W\n", "printf('\nThe output power in fibre optic communication = %1d micro-watt', P_out);\n", "\n", "// Result\n", "// The output power in fibre optic communication = 5 micro-watt " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }