{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11: LASERS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.1: Ratio_of_spontaneous_and_stimulated_emission.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex11.1: Page-249 (2010)\n", "h = 6.626e-034; // Planck's constant, Js\n", "c = 3e+08; // Speed of light in free space, m/s\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "T = 300; // Temperature at absolute scale, K\n", "lambda = 5500e-010; // Wavelength of visible light, m\n", "rate_ratio = exp(h*c/(lambda*k*T))-1; // Ratio of spontaneous emission to stimulated emission\n", "printf('\nThe ratio of spontaneous emission to stimulated emission for visible region = %1.0e', rate_ratio);\n", "lambda = 1e-02; // Wavelength of microwave, m\n", "rate_ratio = exp(h*c/(lambda*k*T))-1; // Ratio of spontaneous emission to stimulated emission\n", "printf('\nThe ratio of spontaneous emission to stimulated emission for microwave region = %6.4f', rate_ratio);\n", "\n", "// Result\n", "// The ratio of spontaneous emission to stimulated emission for visible region = 8e+037\n", "// The ratio of spontaneous emission to stimulated emission for microwave region = 0.0048" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.2: Energy_of_excited_state_of_laser_system.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex11.2: Page-250 (2010)\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", "h = 6.626e-034; // Planck's constant, Js\n", "c = 3e+08; // Speed of light in free space, m/s\n", "lambda = 690e-009; // Wavelength of laser light, m\n", "E_lower = 30.5; // Energy of lower state, eV\n", "E = h*c/(lambda*e); // Energy of the laser light, eV\n", "E_ex = E_lower + E; // Energy of excited state of laser system, eV\n", "printf('\nThe energy of excited state of laser system = %4.1f eV', E_ex);\n", "\n", "// Result\n", "// The energy of excited state of laser system = 32.3 eV" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.3: Condition_of_equivalence_of_stimulated_and_spontaneous_emission.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex11.3: Page-250 (2010)\n", "h = 6.626e-034; // Planck's constant, Js\n", "k = 1.38e-023; // Boltzmann constant, J/K\n", "// Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n", "// f/T = log(2)*k/h = A\n", "A = log(2)*k/h; // Frequency per unit temperature, Hz/K\n", "printf('\nThe stimulated emission equals spontaneous emission iff f/T = %4.2e Hz/K', A);\n", "\n", "// Result\n", "// The stimulated emission equals spontaneous emission iff f/T = 1.44e+010 Hz/K " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.4: Area_and_intensity_of_image_formed_by_laser.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex11.4: Page-250 (2010)\n", "lambda = 500e-009; // Wavelength of laser light, m\n", "f = 15e-02; // Focal length of the lens, m\n", "d = 2e-02; // Diameter of the aperture of source, m\n", "a = d/2; // Radius of the aperture of source, m\n", "P = 5e-003; // Power of the laser, W\n", "A = %pi*lambda^2*f^2/a^2; // Area of the spot at the focal plane, metre square\n", "I = P/A; // Intensity at the focus, W per metre square \n", "printf('\nThe area of the spot at the focal plane = %4.2e metre square', A);\n", "printf('\nThe intensity at the focus = %4.2e watt per metre square', I);\n", "\n", "// Result\n", "// The area of the spot at the focal plane = 1.77e-010 metre square\n", "// The intensity at the focus = 2.83e+007 watt per metre square " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.5: Rate_of_energy_released_in_a_pulsed_laser.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex11.5: Page-251 (2010)\n", "h = 6.626e-034; // Planck's constant, Js\n", "c = 3e+08; // Speed of light in free space, m/s\n", "lambda = 1064e-009; // Wavelength of laser light, m\n", "P = 0.8; // Average power output per laser pulse, W\n", "dt = 25e-003; // Pulse width of laser, s\n", "E = P*dt; // Energy released per pulse, J\n", "N = E/(h*c/lambda); // Number of photons in a pulse\n", "printf('\nThe energy released per pulse = %2.0e J', E);\n", "printf('\nThe number of photons in a pulse = %4.2e', N);\n", "\n", "// Result\n", "// The energy released per pulse = 2e-002 J\n", "// The number of photons in a pulse = 1.07e+017 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.6: Angular_and_linear_spread_of_laser_beam.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex11.6:Page-251 (2010)\n", "lambda = 693e-009; // Wavelength of laser beam, m\n", "D = 3e-003; // Diameter of laser beam, m\n", "d_theta = 1.22*lambda/D; // Angular spread of laser beam, rad\n", "d = 300e+003; // Height of a satellite above the surface of earth, m\n", "a = d_theta*d; // Diameter of the beam on the satellite, m\n", "printf('\nThe height of a satellite above the surface of earth = %4.2e rad', d_theta);\n", "printf('\nThe diameter of the beam on the satellite = %4.1f m', a);\n", "\n", "// Result\n", "// The height of a satellite above the surface of earth = 2.82e-004 rad\n", "// The diameter of the beam on the satellite = 84.5 m " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }