{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Conducting materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.10: calculate_electrical_conductivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6.10 , pg 175\n", "lam=4*10^-8 //maen free path of electrons (in m)\n", "n=8.4*10^28 //electron density (in m^-3)\n", "Vth=1.6*10^6 //average thermal velocity of electrons (in m/s)\n", "e=1.6*10^-19 //charge of electron (in C)\n", "Me=9.11*10^-31 //mass of electron (in Kg)\n", "sigma=(n*e^2*lam)/(Vth*Me) //conductivity\n", "printf('Electrical conductivity (in /(ohm*m))')\n", "disp(sigma)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.11: calculate_electrical_and_thermal_conductivities.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6.11 , pg 176\n", "Tr=10^-14 //relaxation time (in s)\n", "T=300 //temperature (in K)\n", "n=6*10^28 //electron concentration (in /m^3)\n", "Me=9.11*10^-31 //mass of electron (in Kg)\n", "e=1.6*10^-19 //charge of electron (in C)\n", "k=1.38*10^-23 //Boltzmann constant (in J/K)\n", "sigma=(n*e^2*Tr)/(Me) //Electrical conductivity \n", "K=(3*n*k^2*Tr*T)/(2*Me) //Thermal conductivity \n", "L=K/(sigma*T) //Lorentz number\n", "printf('Electrical conductivity (in /(ohm*m))')\n", "disp(sigma)\n", "printf('Thermal conductivity (in W/(m*K))')\n", "disp(K)\n", "printf('Lorentz number (in(W*ohm)/K^2)')\n", "disp(L)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.12: find_relaxation_time.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6.12 , pg 177\n", "n=5.8*10^28 // electron concentration (in /m^3)\n", "e=1.6*10^-19 // charge of electron (in C)\n", "rho=1.54*10^-8 //resistivity of metal (in ohm*m)\n", "M=9.11*10^-31 //mass of electron (in Kg)\n", "T=M/(n*e^2*rho) //relaxation time\n", "printf('Relaxation time(in s)')\n", "disp(T)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.13: calculate_drift_velocity_and_mobility_and_relaxation_time.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6.13 , pg 177\n", "rho=1.54*10^-8 //resistivity (in ohm*m)\n", "E=100 //electric field intensity (in V/m)\n", "n=5.8*10^28 //electron concentration (in /m^3)\n", "e=1.6*10^-19 //charge of electron (in C)\n", "Me=9.11*10^-31 //mass of electron (in Kg)\n", "T=Me/(rho*n*e^2) //relaxation time\n", "Vd=(e*E*T)/Me //drift velocity\n", "U=Vd/E //mobility\n", "printf('Relaxation time (in s)')\n", "disp(T)\n", "printf('Drift veloity (in m/s)')\n", "disp(Vd)\n", "printf('Mobility(in m^2/(V*s))')\n", "disp(U)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.14: calculate_drift_velocity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 14 , pg 178\n", "T=300 //temperature (in K)\n", "l=2 //length (in m)\n", "R=0.02 //Resistance (in ohm)\n", "u=4.3*10^-3 // (in m^2/(V*s))\n", "I=15 //current (in A)\n", "V=I*R //voltage drop across wire (in V )\n", "E=V/l //electric field across wire (in V/m)\n", "Vd=u*E //drift velocity (in m/s)\n", "printf('Drift velocity (in m/s)')\n", "disp(Vd)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.15: calculate_Fermi_energy_and_Fermi_temperature.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 15 , pg 179\n", "m=9.11*10^-31 //mass of electron (in Kg)\n", "k=1.38*10^-23 //boltzmann constant (in J/K)\n", "e=1.6*10^-19 //electronic charge(in C )\n", "Vf=0.86*10^6 //Fermi velocity of electron (in m/s)\n", "Ef=(m*Vf^2)/(2*e) //Fermi energy (in eV)\n", "Tf=(Ef*e)/k //Fermi temperature\n", "printf('Fermi energy=')\n", "printf('Ef=%.1f eV \n',Ef)\n", "printf('Fermi temperature =')\n", "printf('Tf=%.0f K',Tf)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.16: calculate_Fermi_velocity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 16 , pg 179\n", "Tf=2460 //Fermi temperature (in K)\n", "m=9.11*10^-31 //mass of electron (in Kg)\n", "k=1.38*10^-23 //boltzmann constant (in J/K)\n", "Vf=sqrt((2*k*Tf)/m) //Fermi velocity\n", "printf('Fermi velocity (in m/s)=')\n", "disp(Vf)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.1: calculate_Fermi_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 1 , pg 170\n", "Vf=10^6 //Fermi velocity (in m/s)\n", "m=9.11*10^-31 // mass of electron(in Kg)\n", "Ef=(m*Vf^2)/2 //Fermi energy (in J)\n", "printf('Fermi energy for the electrons in the metal=')\n", "printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.2: calculate_Fermi_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 2 , pg 170\n", "Ef0=7.04*1.6*10^-19 // Fermi energy at 0 K (converting eV into J)\n", "T=300 //temperature (in K)\n", "k=1.38*10^-23 //boltzmann constant (in (m^2*Kg)/(s^2*K^-1))\n", "Ef=Ef0*(1-(%pi^2*(k*T)^2)/(12*Ef0^2)) //Fermi energy at 300 K (in J)\n", "printf('Fermi energy at 300 K =')\n", "printf('Ef=%.4f eV',(Ef/(1.6*10^-19))) //converting J into eV" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3: calculate_conductivity_and_relaxation_time.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6.3 , pg 171\n", "d=2.7*10^3 //density (in Kg/m^3)\n", "Ma=27 //atomic weight\n", "Me=9.11*10^-31 //mass of electron (in Kg)\n", "e=1.6*10^-19 //charge in electron (in C)\n", "T=10^-14 //relaxation time (in s)\n", "Na=6.022*10^23 //Avogadro constant\n", "N=3*10^3 //number of free electrons per atom\n", "n=(d*Na*N)/Ma //(in /m^3)\n", "sigma=(n*e^2*T)/Me //conductivity\n", "printf('Conductivity of Al (in /(ohm*m))')\n", "disp(sigma)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.4: calculate_Lorentz_number.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 4 , pg 171\n", "sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n", "K=390 //thermal conductivity (in W/(m K))\n", "T=293 //temperature (in K)\n", "L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n", "printf('Lorentz number (in W*ohm /K^2)')\n", "disp(L)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.5: calculate_electrical_conductivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 5 , pg 172\n", "d=8900 //density (in Kg/m^3)\n", "M=63.5 //atomic weight \n", "T=10^-14 //relaxation time(in s)\n", "N=6.022*10^23 //Avogadros constant\n", "N1=10^3 //number of free electrons per atom\n", "e=1.6*10^-19 //electronic charge (in C)\n", "me=9.11*10^-31 //mass of electron (in Kg)\n", "\n", "n=(N*d*N1)/M \n", "sigma =(n*e^2*T)/me //electrical conductivity\n", "printf('Electrical conductivity(in ohm m)=')\n", "disp(sigma)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6: EX6_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 6 , pg 172\n", "rho=1.54*10^-8 //resistivity (in ohm*m)\n", "Ef=5.5 //Fermi energy (in eV)\n", "E=100 //electric field intensity (in V/m)\n", "n=5.8*10^28 //concentration of electrons (in atoms/m^3)\n", "e=1.6*10^-19 //charge in electron (in C)\n", "Me=9.11*10^-31 //mass of electron (in Kg)\n", "T=Me/(rho*n*e^2) //relaxation time\n", "Un=(e*T)/Me //mobility of electron\n", "Vd=(e*T*E)/Me //drift velocity\n", "Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n", "lam_m=Vf*T //mean free path\n", "\n", "printf('Relaxation time of electron (in s)')\n", "disp(T)\n", "printf('Mobility of electron (in m^2/(V*s))')\n", "disp(Un)\n", "printf('Drift velocity of electron (in m/s)')\n", "disp(Vd)\n", "printf('Fermi velocity of electrons (in m/s)')\n", "disp(Vf)\n", "printf('Mean free path(in m)')\n", "disp(lam_m)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.7: calculate_thermal_conductivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 6 , pg 174\n", "L= 2.26*10^-8 //Lorentz number (in W*m /K^2)\n", "T=27+273 //temperature (in K) (converting celsius into kelvin)\n", "rho=1.72*10^-8 //electrical resistivity (in ohm *m)\n", "\n", "//according to Wiedemann-Franz law\n", "K=(L*T)/rho //thermal conductivity\n", "printf('Thermal conductivity =')\n", "printf('K=%.0f W/(m*K)',K)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.8: calculate_Lorentz_number.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 8 , pg 174\n", "sigma=5.87*10^7 // electrical conductivity (in /(ohm m))\n", "K=390 //thermal conductivity (in W/(m K))\n", "T=293 //temperature (in K)\n", "L=K/(sigma*T) //Lorentz number by wiedemann-Franz law\n", "printf('Lorentz number (in W*ohm /K^2)')\n", "disp(L)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.9: find_F_E.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 6 , Example6 9 , pg 174\n", "del_E=0.01*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n", "T=200 //temperature (in K)\n", "k=1.38*10^-23 //boltzmanns constant (in J/K)\n", "F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n", "printf('F_E=%.2f',F_E)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }