{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13: Additional solved short answers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1_10: calculate_interplanar_spacing.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 1) 10 , pg 349\n", "a=4.938 //lattice constant(in Angstrom)\n", "h=2\n", "k=2\n", "l=0 //since (h k l)=(2 2 0) miller indices\n", "d=a/sqrt(h^2+k^2+l^2) //spacing\n", "printf('spacing of (2 2 0) planes=')\n", "printf('d=%.3f Angstrom',d)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1_12: find_the_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 1) 12_b_3 , pg 349\n", "Eg=0.8*1.6*10^-19 //bandgap (in J) (converting eV into J)\n", "h=6.625*10^-34 //plancks constant (in J s)\n", "c=3*10^8 //speed of light (in m/s)\n", "lam=(h*c)/Eg //wavelength\n", "printf('wavelength of light emitted (in m)is=')\n", "disp(lam)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1_14: calculate_energy_of_scattered_photon.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 1) 14_a_3 , pg 350\n", "lam=1.24*10^-13 //wavelength (in m)\n", "h=6.625*10^-34//plancksconstant(in J s)\n", "c=3*10^8//velocity of x-ray photon(in m/sec)\n", "m0=9.11*10^-31//rest mass of electron(in Kg)\n", "phi=(90*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", "delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n", "LAM=lam+delta_H //wavelength (in m)\n", "E=(h*c)/LAM //energy of scattered photon (in J)\n", "printf('Energy of scattered photon (in J)=')\n", "disp(E)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1_15: calculate_number_of_unit_cells.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 1) 15_b_3 , pg 352\n", "a=2.88*10^-8 //lattice constant (in cm)\n", "d=7200 //density (in Kg/m^3)\n", "C=8/a^3 // atomic concentration\n", "n=8 //number of atoms/cell\n", "n1=C/n //unit cell concentration\n", "\n", "//since density =7200 Kg/m^3\n", "//7200 Kg = 10^6 cc\n", "//hence 1Kg = (10^6)/7200 cc\n", "N=(n1*10^6)/7200 //number of unit cells present in 1 Kg of metal\n", "printf('Number of unit cells present in 1 Kg of metal=')\n", "disp(N)\n", "printf('unit cells')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1_2: find_fundamental_frequency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 1) 2 , pg 348\n", "l=0.7*10^-3//length(in m)\n", "E=8.8*10^10//youngs modulus(in N/m^2)\n", "d=2800//density(in kg/m^3)\n", "p=1//fundamental mode\n", "n= p*sqrt(E/d)/(2*l) //natural frequency\n", "printf('Fundamental frequency of quartz crystal)\n')\n", "printf('n=%.2f Hz',n)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1_6: calculate_critical_angle.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 1) 6 , pg 348\n", "n1=1.5 //refractive index of core\n", "n2= 1.47 // cladding refractive index\n", "theta_c=asin(n2/n1) //critical angle (in radian)\n", "printf('critical angle=\n')\n", "printf('theta_c=%.2f degree',(theta_c*180)/%pi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2_13: calculate_Na_and_acceptance_angle.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 2) 13_b , pg 354\n", "n1=1.5//core refractive index\n", "n2=1.447//cladding refractive index\n", "n0=1//refractive index of air\n", "NA=sqrt(n1^2-n2^2)//numerical aperture\n", "alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", "printf('NA=%.1f \n',NA)\n", "printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2_1: calculate_the_frequency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 2) 1 , pg 352\n", "l=4*10^-2 //length(in m)\n", "E=207 *10^6 //youngs modulus(in N/m^2)\n", "d=8900 //density(in kg/m^3)\n", "p=1//fundamental mode\n", "n= p*sqrt(E/d)/(2*l) //natural frequency\n", "printf('Fundamental frequency of quartz crystal)\n')\n", "printf('n=%.2f Hz',n)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2_7: calculate_wavelength_of_scattered_radiation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 2) 7 , pg 353\n", "lam=0.5*10^-9 //wavelength (in m)\n", "h=6.625*10^-34//plancksconstant(in J s)\n", "c=3*10^8//velocity of x-ray photon(in m/sec)\n", "m0=9.11*10^-31//rest mass of electron(in Kg)\n", "phi=(45*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", "delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering (in m)\n", "LAM=lam+delta_H //wavelength (in m)\n", "printf('wavelength of scattered radiation (im m)=')\n", "disp(LAM)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3_11: calculate_mean_free_time.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 3) 11_a , pg 355\n", "Un=3*10^-3 //electron mobility (in m^2/(V*s))\n", "e=1.6*10^-19 //charge in electron (in C)\n", "Me=9.11*10^-31 //mass of electron (in Kg)\n", "T=(Me*Un)/e //mean free time\n", "printf('Mean free time(in S)')\n", "disp(T)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3_12: calculate_the_resistivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 3) 12_b , pg 356\n", "ni=1.5*10^16 //intrinsic carrier density(in m^-3)\n", "Un=1.35 //electron mobility (in m^2/(V*s))\n", "up=0.48 //hole mobility (in m^2/(V*s))\n", "e=1.6*10^-19 //charge in electron (in C)\n", "\n", "Ix=10^-3 //current (in A)\n", "d=100*10^-6 //thickness (in m)\n", "Bz=0.1 //magnetic induction (in T)\n", "Un1=0.07 //electron mobility (in m^2/(V*s))\n", "n=10^23 //doping concentration (in atoms/m^3)\n", "\n", "sigma=ni*e*(Un+up) // electrical conductivity\n", "rho=1/sigma //resistivity\n", "Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", "printf('Resistivity(in ohm*m)')\n", "disp(rho)\n", "printf('Hall voltage (in V)')\n", "disp(Vh)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3_13: calculate_energy_loss_per_hour_and_intensity_of_magnetization_and_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 3) 13_b , pg 357\n", "A=250 //area of B-H loop\n", "f=50 //frequency (in Hz)\n", "d=7.5*10^3 //density (in Kg/m^3)\n", "M=10 //mass of core (in Kg)\n", "\n", "H=2000 //magnetic field intensity (in A/m)\n", "Xm=1000 //susceptibility\n", "U0=4*%pi*10^-7 // relative permeability\n", "\n", "V=M/d //volume of sample (in m^3)\n", "N=60*60*f //number of cycles per hour\n", "EL=A*V*N //energy loss per hour \n", "I=H*Xm //intensity of magnetization\n", "Ur=1+Xm\n", "B=Ur*U0*H //magnetic flux density\n", "printf('Energy loss per hour (in J)')\n", "disp(EL)\n", "printf('Intensity of magnetization (in Wb/m^3)')\n", "disp(I)\n", "printf('Magnetic flux density(in T)')\n", "disp(B)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3_14: find_capacitance_and_electric_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved numerical questions , Example(set 3) 14 , pg 358\n", "Er1=1.0000684 //Dielectric constant (for sum 14_a_2)\n", "N=2.7*10^25 //(in atoms/m^3)\n", "E0=8.85*10^-12 //permittivity of free space (in F/m)\n", "Er2=6 //dielectric constant (for sum 14_a_3)\n", "E=100 //electric field intensity (in V/m) (for sum 14_a_3)\n", "A=200*10^-4 //area (in m^2)\n", "Er3=3.7 //dielectric constant (for sum 14_b_2)\n", "d=10^-3 //thickness (in m)\n", "V=300 //electric potential (in V)\n", "Alpha_e=(E0*(Er1-1))/N //electronic polarization\n", "R=(Alpha_e/(4*%pi*E0))^(1/3) //radius of atom\n", "P=E0*(Er2-1)*E //polarization\n", "C=(E0*Er3*A)/d //capacitance\n", "E1=V/d //electric flux density\n", "printf('Electronic polarization (in F*m^2)')\n", "disp(Alpha_e)\n", "printf('Radius of He atom(in m)')\n", "disp(R)\n", "printf('polarization(in C/m^2)')\n", "disp(P)\n", "printf('capacitance(in F)')\n", "disp(C)\n", "printf('Electric flux density (in V/m)')\n", "disp(E1)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }