{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 12: Additional solved examples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.10: calculate_minimum_and_maximum_number_of_total_internal_reflections_per_metre.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 10 , pg 335\n", "n1=1.5//core refractive index\n", "n2=1.45//cladding refractive index\n", "n0=1//refractive index of air\n", "NA=sqrt(n1^2-n2^2)//numerical aperture\n", "alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", "a=100*10^-6/2 //radius of core\n", "phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", "L=a/tan(phi_m) //(in m)\n", "printf('Minimum number of reflections per metre=zero\n') //since rays travelling with alpha=0 suffer no internal reflection\n", "//for rays travelling with alpha=alpha_m ,1 internal reflection takes place for a transversed distance of 2*L\n", "N=1/(2*L) //Maximum number of reflections per metre\n", "disp('Maximum number of reflections per metre(in m^-1)=')\n", "printf('N=%.0f',N)\n", "\n", "//Answer varies as L is restricted to 1.86*10^-4 (m) instead of 1.888*10^-4 (m)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.11: calculate_energy_and_momentum_of_photon.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 11 , pg 335\n", "c=3*10^8 //speed of light(in m/sec)\n", "h=6.625*10^-34//planck's constant(in J s)\n", "lam=1.4*10^-10//wavelength(in m)\n", "E=(h*c)/(lam*1.6*10^-19) //energy of photon(in eV)\n", "p=h/lam //momentum of photon\n", "printf('Energy of photo\n')\n", "printf('E=%.1f eV\n',E)\n", "printf('momentum of photon(in Kg m/sec)\n')\n", "disp(p)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.12: calculate_number_of_photons_emitted_per_second.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 12 , pg 336\n", "E1=2*10^4 //energy emitted per second(in J)\n", "n=1000*10^3 //frequency(in Hz)\n", "h=6.625*10^-34 //plancks constant(in J s)\n", "E=h*n//energy carried by 1 photon(in J)\n", "N=E1/E//number of photons emitted per second\n", "printf('number of photons emitted per second\n')\n", "disp(N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.13: calculate_de_Broglie_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 13 , pg 336\n", "m=0.05//mass(in Kg)\n", "v=2000//speed(in m/sec)\n", "h=6.625*10^-34//plancks constant(in J s)\n", "p=m*v//momentum(in kg m/sec)\n", "lam=h/p //wavelength\n", "printf('de Broglie wavelength(in m)\n')\n", "disp(lam)\n", "printf('de Broglie wavelength(in A)\n')\n", "disp(lam*10^10)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.14: find_change_in_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 14 , pg 336\n", "h=6.625*10^-34//plancksconstant(in J s)\n", "c=3*10^8//velocity of x-ray photon(in m/sec)\n", "m0=9.11*10^-31//rest mass of electron(in Kg)\n", "phi=(85*%pi)/180//angle of scattering (in radian) (converting degree into radian)\n", "delta_H=(h*(1-cos(phi)))/(m0*c)//change in wavelength due to compton scattering\n", "printf('change in wavelength of x-ray photon(in m)\n')\n", "disp(delta_H)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.15: find_miller_indices.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 15 , pg 337\n", "//plane has intercepts 2a,2b,3c along the 3 crystal axes\n", "//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", "//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n", "p=2\n", "q=2\n", "s=3 \n", "//therefore reciprocal\n", "r1=1/2\n", "r2=1/2\n", "r3=1/3\n", "//taking LCM\n", "v=int32([2,2,3])\n", "l=double(lcm(v))\n", "m1=(l*r1)\n", "m2=(l*r2)\n", "m3=(l*r3)\n", "printf('miler indices=')\n", "disp(m3,m2,m1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.16: find_miller_indices.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 16 , pg 337\n", "//plane has intercepts 4a,2b,4c along the 3 crystal axes\n", "//lattice points in 3-d lattice are given by r=p*a+q*b+s*c\n", "//as p,q,r are the basic vectors the proportion of intercepts 2:2:3\n", "p=4\n", "q=2\n", "s=4 \n", "//therefore reciprocal\n", "r1=1/4\n", "r2=1/2\n", "r3=1/4\n", "//taking LCM\n", "v=int32([4,2,4])\n", "l=double(lcm(v))\n", "m1=(l*r1)\n", "m2=(l*r2)\n", "m3=(l*r3)\n", "printf('miler indices=')\n", "disp(m3,m2,m1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.17: find_size_of_unit_cell.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 17 , pg 338\n", "d110=1.96//spacing of(1 1 0) planes (in Angstrom)\n", "h=1\n", "k=1\n", "l=0 //(h k l)=(1 1 0)\n", "a=d110*sqrt(h^2+k^2+l^2)//size of unit cell\n", "printf('size of unit cell=')\n", "printf('a=%.2f angstrom',a)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.18: find_volume_of_unit_cell.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 18 , pg 339\n", "r=1.575 *10^-10 //radius of atom (in m)\n", "a=2*r//lattice constant (for HCP structure) (in m)\n", "c=a*sqrt(8/3) //(in m)\n", "V=(3*sqrt(3)*a^2*c)/2 //volume of unit cell\n", "printf('volume of unit cell(in m^3)\n')\n", "disp(V)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.19: calculate_Fermi_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 19 , pg 339\n", "Vf=7*10^5 //Fermi velocity (in m/s)\n", "m=9.11*10^-31 // mass of electron(in Kg)\n", "Ef=(m*Vf^2)/2 //Fermi energy (in J)\n", "printf('Fermi energy for the electrons in the metal=')\n", "printf('Ef=%.1f eV',(Ef/(1.6*10^-19))) //converting J into eV\n", "\n", "\n", "\n", "\n", "//Answer is given wrong" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.1: calculate_relative_population.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 1 , pg 330\n", "lam=590*10^-9//wavelength(in m)\n", "T=270+273 //temperature(in kelvin) (converting celsius into kelvin)\n", "k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", "h=6.625*10^-34//plancks constant(in Js)\n", "c=3*10^8//speed of light\n", "N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", "//n1=number of atoms in ground state\n", "//n2=number of atoms in excited state\n", "printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", "disp(N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.20: EX12_20.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 20 , pg 339\n", "rho=1.8*10^-8 //resistivity (in ohm*m)\n", "Ef=4.8 //Fermi energy (in eV)\n", "E=100 //electric field intensity (in V/m)\n", "n=6.2*10^28 //concentration of electrons (in atoms/m^3)\n", "e=1.6*10^-19 //charge in electron (in C)\n", "Me=9.11*10^-31 //mass of electron (in Kg)\n", "T=Me/(rho*n*e^2) //relaxation time\n", "Un=(e*T)/Me //mobility of electron\n", "Vd=(e*T*E)/Me //drift velocity\n", "Vf=sqrt((2*Ef*e)/Me) //Fermi velocity\n", "lam_m=Vf*T //mean free path\n", "\n", "printf('Relaxation time of electron (in s)')\n", "disp(T)\n", "printf('Mobility of electron (in m^2/(V*s))')\n", "disp(Un)\n", "printf('Drift velocity of electron (in m/s)')\n", "disp(Vd)\n", "printf('Fermi velocity of electrons (in m/s)')\n", "disp(Vf)\n", "printf('Mean free path(in m)')\n", "disp(lam_m)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.21: evaluate_value_of_F_E.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 21 , pg 341\n", "del_E=0.02*1.6*10^-19 // del_E = E-Ef (in J) (converting eV into J)\n", "T=220 //temperature (in K)\n", "k=1.38*10^-23 //boltzmanns constant (in J/K)\n", "F_E=1/(1+exp(del_E/(k*T))) //Fermi Dirac distribution function\n", "printf('F_E=%.3f',F_E)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.22: calculate_how_is_Ef_located_relative_to_Ei.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 22 , pg 341\n", "ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n", "Nd=5*10^15 //donor concentration (in atoms/cm^3)\n", "T=300 //temperature (in K)\n", "e=1.6*10^-19 //charge of electron (in C)\n", "k=1.38*10^-23 //Boltzmann constant (in J/K)\n", "n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n", "p0=ni^2/n0 //hole concentration\n", "E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n", "printf('Hole concentration (in cm^-3)')\n", "disp(p0)\n", "printf('Location of Ef relative to Ei (in eV)')\n", "disp(E/e)\n", "x = linspace(-5.5,5.5,51);\n", "y = 1 ;\n", "\n", "scf(2);\n", "clf(2);\n", "plot(x,y+0.1);\n", "\n", "plot(x,y,'ro-');\n", "plot(x,y-0.329,'--');\n", "plot(x,y*0,'bs:');\n", "xlabel(['x axis';'(independent variable)']);\n", "ylabel('Energy level (eV)');\n", "title('Band diagram');\n", "legend(['Ec';'Ef';'Ei';'Ev']);\n", "set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.23: find_magnitude_of_Hall_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 23 , pg 342\n", "I=40 //current (in A)\n", "B=1.4 //magnetic field (in T)\n", "d=2*10^-2 //width of slab (in m)\n", "n=8.4*10^28 //concentration of electrons (in m^-3)\n", "e=1.6*10^-19 // charge (in C)\n", "VH=(B*I)/(n*e*d) //Hall voltage\n", "printf('Hall voltage(in V)=')\n", "disp(VH)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.24: calculate_Hall_voltage_and_Hall_coefficient.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 24 , pg 342\n", "e=1.6*10^-19 //charge in electron (in C)\n", "Ix=2*10^-3 //current (in A)\n", "d=220*10^-4 //thickness (in cm)\n", "Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n", "Un=800 //electron mobility (in cm^2/(V*s))\n", "n=9*10^16 //doping concentration (in atoms/cm^3)\n", "\n", "sigma=n*e*(Un) // electrical conductivity\n", "rho=1/sigma //resistivity\n", "Rh=-1/(e*n) //Hall coefficient\n", "Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", "printf('Resistivity(in ohm*cm)')\n", "disp(rho)\n", "printf('Hall coefficient(in cm^3/C)')\n", "disp(Rh)\n", "printf('Hall voltage (in V)')\n", "disp(Vh)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.25: determine_magnitude_and_direction_of_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 25 , pg 343\n", "I=10 // current(in A)\n", "A=8*10^-4 //area(in m^2)\n", "M=I*A //magnetic moment associated with the loop\n", "printf('Magnetic moment associated with the loop(in A m^2)=')\n", "disp(M)\n", "printf('M is directed away from the observer and is perpendicular to the plane of the loop')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.26: determine_magnitude_and_direction_of_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 26 , pg 343\n", "I=22 // current(in A)\n", "A=9*10^-3 //area(in m^2)\n", "M=I*A //magnetic moment associated with the loop\n", "printf('Magnetic moment associated with the loop(in A m^2)=')\n", "disp(M)\n", "printf('M is directed towards the observer and is perpendicular to the plane of the loop')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.27: determine_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 27 , pg 344\n", "r=0.62*10^-10 //radius of orbit (in m)\n", "e= 1.6*10^-19 //charge on electron (in C)\n", "n=10^15 //frequency of revolution of electron (in rps)\n", "I=e*n //current (in A)\n", "A=%pi *r^2 //area (in m^2)\n", "M=I*A //magnetic moment associated with motion of electron \n", "printf('Magnetic moment associated with motion of electron (in A m^2)')\n", "disp(M)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.28: calculate_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 28 , pg 344\n", "H=2000 //magnetizing field (in A/m)\n", "phi=5*10^-5 //magnetic flux (in Wb)\n", "A=0.2 *10^-4 //area (in m^2)\n", "B=phi/A //magnetic flux density (in Wb/m^2)\n", "u=B/H //permeability (in H/m)\n", "printf('permeability (in H/m )=')\n", "disp(u)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.29: calculate_susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 29 , pg 345\n", "ur=4000 //relative permeability\n", "xm=ur-1 //magnetic susceptibility\n", "printf('Magnetic susceptibility=')\n", "disp(xm)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.2: determine_relative_population.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 2 , pg 330\n", "lam=500*10^-9//wavelength(in m)\n", "T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n", "k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", "h=6.625*10^-34//plancks constant(in Js)\n", "c=3*10^8//speed of light\n", "N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", "//n1=number of atoms in ground state\n", "//n2=number of atoms in excited state\n", "printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", "disp(N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.30: determine_critical_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 30 , pg 345\n", "H0=6*10^4 //magnetic field intensity at 0K (in A/m)\n", "T=4.2 //temperature (in K)\n", "Tc=8 //critical temperature (in K)\n", "Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n", "printf('critical magnetic field intensity\n')\n", "printf('Hc=%.0f A/m',Hc)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.31: calculate_critical_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 31 , pg 346\n", "H0=7*10^4 //magnetic field intensity at 0K (in A/m)\n", "T=4.2 //temperature (in K)\n", "Tc=8.2 //critical temperature (in K)\n", "Hc=H0*(1-(T^2/Tc^2)) // critical magnetic field intensity\n", "printf('critical magnetic field intensity\n')\n", "printf('Hc=%.0f A/m',Hc)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.32: calculate_isotopic_mass.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 32 , pg 346\n", "M1=198.5 //isotopic mass\n", "Tc1=4.175 //critical temperature for M1 (in K)\n", "Tc2=4.213 //critical temperature for M2 (in K)\n", "alpha=0.5\n", "\n", "//M^alpha * Tc=constant\n", "M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n", "printf('Isotopic mass at critical temperature 4.133K\n')\n", "printf('M2=%.3f ',M2)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.33: calculate_isotopic_mass.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 33 , pg 346\n", "M1=199 //isotopic mass\n", "Tc1=4.18 //critical temperature for M1 (in K)\n", "Tc2=4.14 //critical temperature for M2 (in K)\n", "alpha=0.5\n", "\n", "//M^alpha * Tc=constant\n", "M2=((M1^alpha*Tc1)/Tc2)^(1/alpha)\n", "printf('Isotopic mass at critical temperature 4.133K\n')\n", "printf('M2=%.4f ',M2)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.3: calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 3 , pg 331\n", "T=260+273 //temperature(in kelvin) (converting celsius into kelvin)\n", "h=6.625*10^-34//plancks constant(in Js)\n", "c=3*10^8//speed of light(in m/s)\n", "lam=590*10^-9//wavelength(in m)\n", "k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", "N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n", "printf('Ratio of stimulated emission to spontaneous emission is')\n", "disp(N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.4: calculate_number_of_photons_emitted_per_minute.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 4 , pg 331\n", "lam=632.8*10^-9//wavelength(in m)\n", "Em=3.16*10^-3*60//energy emitted per minute(in J/min)\n", "c=3*10^8//speed of light(in m/s)\n", "h=6.625*10^-34//plancks constant(in Js)\n", "n=c/lam //frequency of emitted photons(in Hz)\n", "E=h*n //energy of each photon(in J)\n", "N=Em/E //number of photons emitted per minute\n", "printf('Number of photons emitted per minute')\n", "disp(N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.5: calculate_number_of_photons_emitted_per_minute.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 5 , pg 332\n", "lam=540*10^-9//wavelength(in m)\n", "Em=5*10^-3*60//energy emitted per minute(in J/min)\n", "c=3*10^8//speed of light(in m/s)\n", "h=6.625*10^-34//plancks constant(in Js)\n", "n=c/lam //frequency of emitted photons(in Hz)\n", "E=h*n //energy of each photon(in J)\n", "N=Em/E //number of photons emitted per minute\n", "printf('Number of photons emitted per minute')\n", "disp(N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.6: find_NA_and_critical_angle_and_alpha_m.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 6 , pg 332\n", "n1=1.5//core refractive index\n", "n2=1.45//cladding refractive index\n", "n0=1//refractive index of air\n", "NA=sqrt(n1^2-n2^2)//numerical aperture\n", "alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", "phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", "phi_c=asin(n2/n1) //critical angle (in radian)\n", "printf('NA=%.2f \n',NA)\n", "printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n", "printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n", "printf('phi_c=%.2f degree',(phi_c*180)/%pi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.7: find_NA_and_critical_angle_and_alpha_m.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 7 , pg 333\n", "n1=1.5//core refractive index\n", "n2=1.45//cladding refractive index\n", "n0=1.1//refractive index of medium\n", "NA=sqrt(n1^2-n2^2)//numerical aperture\n", "alpha_m =asin(NA/n0)//angle of acceptance (in radian)\n", "phi_m=asin((n0*sin(alpha_m))/n1)// no*sin(alpha_m)=n1*sin(phi_m) (in radian)\n", "phi_c=asin(n2/n1) //critical angle (in radian)\n", "printf('NA=%.2f \n',NA)\n", "printf('alpha_m=%.2f degree\n',(alpha_m*180)/%pi)\n", "printf('phi_m=%.2f degree\n',(phi_m*180)/%pi)\n", "printf('phi_c=%.2f degree',(phi_c*180)/%pi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.8: calculate_pulse_broadening_per_unit_length.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 8 , pg 334\n", "n1=1.5//core refractive index\n", "n2=1.45//cladding refractive index\n", "c=3*10^8//speed of light(in m/s)\n", "P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n", "//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n", "printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n", "disp(P)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.9: calculate_pulse_broadening_per_unit_length.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Additional solved examples , Example 9 , pg 334\n", "n1=1.55//core refractive index\n", "n2=1.48//cladding refractive index\n", "c=3*10^8//speed of light(in m/s)\n", "P=(n1*(n1-n2))/(n2*c) //pulse broadening per unit length due to multiple dispersion\n", "//P=(del_t/L) where del_t=time interval , L=distance transversed by ray inside core\n", "printf('pulse broadening per unit length due to multiple dispersion(in s/m)')\n", "disp(P)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }