{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: Special Theory of Relativity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.10: Relativisti_variation_of_mass_of_electron_with_velocity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.10: Page-238 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "m0 = 9.1e-031; // Rest mass of the electron, kg\n", "E0 = m0*c^2; // Rest energy of the electron, J\n", "printf('\nThe rest energy of the electron = %4.2f MeV', E0/1.6e-013);\n", "E = 1.25*E0; // Total energy of the particle\n", "v = sqrt(1-(E0/E)^2)*c; // Velocity of the particle from relativistic variation of mass with speed, m/s\n", "printf('\nThe velocity of the electron when its total energy is 1.25 times its rest energy = %3.1f c = %3.1e cm/s', v/c, v);\n", "\n", "// Result\n", "// The rest energy of the electron = 0.51 MeV\n", "// The velocity of the electron when its total energy is 1.25 times its rest energy = 0.6 c = 1.8e+008 cm/s" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.11: An_electron_subjected_to_relativistic_motion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.11: Page-238 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "v = 0.99*c; // Speed of the electron, m/s\n", "m0 = 9.1e-031; // Rest mass of the electron, kg\n", "m = m0/sqrt(1-v^2/c^2); // Moving mass of the electron, kg\n", "E = m*c^2; // Total energy of the electron, J\n", "printf('\nThe total energy of the electron = %4.2e J', E);\n", "KE_ratio = m0/(2*(m-m0))*(v/c)^2; // Ratio of Newtonian kinetic energy to the relativistic kinetic energy\n", "printf('\nThe ratio of Newtonian kinetic energy to the relativistic kinetic energy = %4.2f', KE_ratio);\n", "\n", "// Result\n", "// The total energy of the electron = 5.81e-013 J\n", "// The ratio of Newtonian kinetic energy to the relativistic kinetic energy = 0.08 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1: Fringe_shift_in_the_Michelson_Morley_experiment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.1: Page-233 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "v = 3e+004; // Speed of earth, m/s\n", "d = 7; // Effective length of each path, m\n", "lambda = 7000e-010; // Wavelength of light used, m\n", "n = 2*d*v^2/(lambda*c^2); // Fringe shift\n", "printf('\nThe expected fringe shift = %3.1f', n);\n", "\n", "// Result\n", "// The expected fringe shift = 0.2 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2: Apparent_length_of_rod_relative_to_the_observer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.2: Page-233 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "v = 3e+007; // Speed of metre rod, m/s\n", "L0 = 1; // Actual length of the rod, m\n", "L = L0*sqrt(1-v^2/c^2); // Apparent length of rod from Lorentz transformation, m\n", "printf('\nThe apparent length of rod realtive to the observer = %5.3f m', L);\n", "\n", "// Result\n", "// The apparent length of rod realtive to the observer = 0.995 m " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3: Apparent_length_of_a_meter_stick_for_different_speeds.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.3: Page-234 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "v = [c c/sqrt(2) sqrt(3)/2*c c/2 0.8*c]; // Different speeds of metre rod, m/s\n", "L0 = 100; // Actual length of the rod, cm\n", "for i = 1:1:5\n", " L = L0*sqrt(1-v(i)^2/c^2); // Apparent length of rod from Lorentz transformation, m\n", " printf('\nFor v = %4.2e m/s, L = %4.1f cm', v(i), L);\n", "end\n", "\n", "// Result\n", "// For v = 3.00e+008 m/s, L = 0.0 cm\n", "// For v = 2.12e+008 m/s, L = 70.7 cm\n", "// For v = 2.60e+008 m/s, L = 50.0 cm\n", "// For v = 1.50e+008 m/s, L = 86.6 cm\n", "// For v = 2.40e+008 m/s, L = 60.0 cm " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.4: Lorentz_transformations_applied_to_a_rigid_bar.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.4: Page-235-236 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "// Part (a)\n", "v = 0.98*c ; // Speed of the rigid bar, m/s\n", "L2 = 1.5; // Length of the rigid bar in S_prime frame, m\n", "L1 = L2*sqrt(1-v^2/c^2); // Apparent length of rod from Lorentz transformation, m\n", "theta2 = 45; // Angle which the bar makes w.r.t. x-aixs in S_prime frame, degree\n", "theta1 = atand(tand(theta2)/sqrt(1-v^2/c^2)); // Orientation of bar relative to S frame, degree\n", "printf('\nThe orientation of the %d m bar relative to S frame = %4.1f degree', L2, theta1);\n", "// Part(b)\n", "v = 0.6*c ; // Speed of the rigid bar, m/s\n", "L2 = 5; // Length of the rigid bar in S_prime frame, m\n", "L1 = L2*sqrt(1-v^2/c^2); // Apparent length of rod from Lorentz transformation, m\n", "theta2 = 30; // Angle which the bar makes w.r.t. x-aixs in S_prime frame, degree\n", "theta1 = atand(tand(theta2)/sqrt(1-v^2/c^2)); // Orientation of bar relative to S frame, degree\n", "printf('\nThe orientation of the %d m bar relative to S frame = %4.1f degree', L2, theta1);\n", "\n", "// Result\n", "// The orientation of the 1 m bar relative to S frame = 78.7 degree\n", "// The orientation of the 5 m bar relative to S frame = 35.8 degree " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.5: Velocity_of_pi_meso.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.5: Page-236 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "t0 = 2.5e-008; // Proper life time of pi-meson, s\n", "t = 2.5e-007; // MEan life time of pi-meson, s\n", "// As t = t0/(sqrt(1-v^2/c^2)), solving for v\n", "v = sqrt(1-(t0/t)^2)*c; // Velocity of pi meson, m/s\n", "printf('\nThe velocity of pi meson = %5.3f c = %4.2e m/s', v/c, v);\n", "\n", "// Result\n", "// The velocity of pi meson = 0.995 c = 2.98e+008 m/s " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6: Relative_speed_of_the_ships_as_measured_by_an_observer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.6: Page-237 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "v = 0.8*c; // Speed of the first spaceship, m/s\n", "u_prime = 0.9*c; // Speed of the second spaceship, m/s\n", "u = (u_prime+v)/(1+u_prime*v/c^2); // Relative speed of the ships as measured by the observer on either one from Velocity addition rule, m/s\n", "printf('\nThe relative speed of the ships as measured by an observer in either one = %5.3f c = %4.2e m/s', u/c, u);\n", "\n", "// Result\n", "// The relative speed of the ships as measured by an observer in either one = 0.988 c = 2.97e+008 m/s " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.7: Velocity_of_one_particle_relative_to_the_other.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.7: Page-237 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "v = 0.9*c; // Speed of the first particle, m/s\n", "u_prime = 0.9*c; // Speed of the oppositely moving second particle, m/s\n", "u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of one particle relative to the other from Velocity addition rule, m/s\n", "printf('\nThe velocity of one particle relative to the other = %5.3f c = %4.2e m/s', u/c, u);\n", "\n", "// Result\n", "// The velocity of one particle relative to the other = 0.994 c = 2.98e+008 m/s " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.8: Velocity_of_the_rocket_as_observed_from_the_earth.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.8: Page-237 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "// Case 1: when velocity of firing is away from the earth\n", "v = 0.5*c; // Speed of the rocket away from the earth, m/s\n", "u_prime = 0.8*c; // Speed of the outgoing spaceship relative to earth, m/s\n", "u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of rocket moving away relative to the earth, m/s\n", "printf('\nThe velocity of rocket moving away relative to the earth = %4.2f c = %4.2e m/s', u/c, u);\n", "// Case 2: when velocity of firing is towards the earth\n", "v = 0.5*c; // Speed of the rocket moving towards the earth, m/s\n", "u_prime = -0.8*c; // Speed of the outgoing spaceship relative to earth, m/s\n", "u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of approaching rocket relative to the earth, m/s\n", "printf('\nThe velocity of approaching rocket relative to the earth = %3.1f c = %3.1e m/s', u/c, u);\n", "\n", "// Result\n", "// The velocity of rocket moving away relative to the earth = 0.93 c = 2.79e+008 m/s\n", "// The velocity of approaching rocket relative to the earth = -0.5 c = -1.5e+008 m/s " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.9: Velocity_of_the_particle_when_its_total_energy_is_thrice_its_rest_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex4.9: Page-237 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "E0 = 1; // Assume the rest energy of the particle to be unity\n", "E = 3*E0; // Total energy of the particle\n", "v = sqrt(1-(E0/E)^2)*c; // Velocity of the particle from relativistic variation of mass with speed, m/s\n", "printf('\nThe velocity of the particle when its total energy is thrice its rest energy = %5.3e cm/s', v);\n", "\n", "// Result\n", "// The velocity of the particle when its total energy is thrice its rest energy = 2.828e+008 cm/s " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }