{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9: Semiconducting materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.10: Intrinsic_carrier_concentration.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.10.\n", "//Page No 272.\n", "clc;clear;\n", "d = 10^(-6);//Electrical conductivity -[ohm^-1 m^-1].\n", "e = 1.6*10^(-19);//Electron charge.\n", "ue = 0.85;//Electron mobility -[m^2 V^-1 s^-1].\n", "uh = 0.04;//hole mobility -[m^2 V^-1 s^-1].\n", "Ni = (d/(e*(ue+uh)));//intrinsic carrier concentration\n", "printf('\nThe intrinsic carrier concentration of GaAs is %3.3e m^-3',Ni);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.11: Concentrations.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "\n", "//Example No.9.11.\n", "//Page No 272.\n", "clc;clear;\n", "p = 0.1;//Resistivity of P-type and N-type -[ohm m].\n", "e = 1.6*10^(-19);//Electron charge.\n", "Uh = 0.48;//Hole mobility -[m^2 V^-1 s^-1].\n", "Ue = 1.35;//Electron mobility -[m^2 V^-1 s^-1].\n", "ni = 1.5*10^(16);\n", "d = (1/p);//Electrical conductivity\n", "disp('For P-type material')\n", "printf('\n1)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n", "Na = (d/(e*Uh));//Acceptor concentration.\n", "printf('\n2)The acceptor concentration is %3.3e m^-3',Na);\n", "n1 = (((ni)^(2))/(Na));//Minority carriers concentration.\n", "printf('\n3)The minority carriers concentration is %3.3e m^-3',n1);\n", "disp('For N-type semiconductor')\n", "d = (1/p);//Electrical conductivity.\n", "printf('\n2)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n", "Nd = (d/(e*Ue));//Donor concentration.\n", "printf('\n2)The donor concentration is %3.3e m^-3',Nd);\n", "n2 = (((ni)^(2))/(Nd));//Minority carriers concentration.\n", "printf('\n3)The minority carriers concentration is %3.3e m^-3',n2);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1: Number_of_charge_carrier.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.1.\n", "//Page No.266.\n", "//To find number of charge carrier.\n", "clc;clear;\n", "d = 2.2;//Conductivity -[ohm^-1 m^-1].\n", "e = 1.6*10^(-19);//Value of electron.\n", "u1 = 0.36;//Mobility of the electrons -[m^2 V^-1 s^-1].\n", "u2 = 0.14;//Mobility of the holes -[m^2 V^-1 s^-1].\n", "T = 300;//Temperature -[K].\n", "n = (d/(e*(u1+u2)));//Number of charge carriers\n", "printf('\nThe carrier concentration of an intrinsic semiconductor is %3.3e m^3',n);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2: Band_gap.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.2.\n", "//Page No.266.\n", "//To find conductivity of semiconductor.\n", "clc;clear;\n", "d20 = 250;//Conductivity at 20 degree celcius -[ohm^-1 m^-1].\n", "d100 = 1100;//Conductivity at 100 degree celcius -[ohm^-1 m^-1].\n", "k = 1.38*10^(-23);//Boltzman's constant.\n", "Eg = (2*k*((1/373)-(1/293))^(-1)*log((d20/d100)*(373/293)^(3/2)));//Band gap in joules.\n", "printf('\nBand gap of semiconductor in joules is %3.3e J',Eg);\n", "Eg = Eg/(1.6*10^(-19));//band gap in eV.\n", "printf('\nBand gap of semiconductor in eV is %.4f eV',Eg);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.3: Hall_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.3.\n", "//Page No.267.\n", "clc;clear;\n", "B = 0.5;//Magnetic field -[Wb/m^2].\n", "I = 10^(-2);//Current -[A].\n", "l = 100;//Length -[mm].\n", "d = 1;//Thickness -[mm].\n", "Rh = 3.66*10^(-4);//Hall coefficient -[m^3/C].\n", "w = 10*10^(-3);//Breadth -[mm].\n", "Vh = ((B*I*Rh)/w);//Hall voltage.\n", "printf('\nThe Hall voltage is %3.3e V',Vh);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.4: Concentration_of_holes_and_electrons.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.4.\n", "//Page No.268.\n", "clc;clear;\n", "d = 3*10^(4);//Conductivity -[S/m].\n", "e = 1.6*10^(-19);//Value of electron.\n", "ue = 0.13;\n", "uh = 0.05;\n", "ni = 1.5*10^(16);\n", "disp('For N-type semiconductor')\n", "Nd = (d/(e*ue));\n", "printf('\ni)The concentration of electron is %3.3e m^-3',Nd);\n", "p = ((ni)^(2)/(Nd));\n", "printf('\nii)The concentration of holes is %3.3e m^-3',p);\n", "disp('For P-type semiconductor')\n", "Na = (d/(e*uh));\n", "printf('\ni)The concentration of holes is %3.3e m^-3',Na);\n", "n = ((ni)^(2)/(Na));\n", "printf('\nii)The concentration of electron is %3.3e m^-3',n);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.5: carrier_concentration_and_type_of_carrier.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.5.\n", "//Page No.269.\n", "//To calculate carrier concentration.\n", "clc;clear;\n", "Rh = 3.68*10^(-5);//Hall coefficient -[m^3/C].\n", "e = 1.6*10^(-19);//Electron charge -[C].\n", "disp('1)Since the hall voltage is negative,charge carriers of the semiconductors are electrons')\n", "n = ((3*%pi)/(8*Rh*e));//Carrier concentration.\n", "printf('\n2)The carrier concentration is %3.3e m^-3',n);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.6: Intrinsic_carrier_densities.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.6.\n", "//Page No.269.\n", "clc;clear;\n", "Eg1 = 0.36;//Energy gap of the first material -[eV].\n", "Eg2 = 0.72//Energy gap of the second material -[eV].\n", "me = 9.1*10^(-31);// -[kg].\n", "A = 0.052;//'A' is (2*k*T).\n", "T = 300;//Temperature -[K].\n", "a = -0.36;\n", "b = 0.72;\n", "N = (exp(a/A)*exp(b/A));//Ratio of intrinsic carrier densities of material A & B.\n", "printf('\nThe ratio of intrinsic carrier densities of the materials A & B is %3.3e',N);\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.7: Mobility_of_electro.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.7.\n", "//Page No.270.\n", "//To find mobility of the electron.\n", "clc;clear;\n", "d = 112;//Conductivity -[ohm^-1 m^-1].\n", "Nd = 2*10^(22);//Concentration of electrons -[m^-3].\n", "e = 1.6*10^(-19);//Electron charge.\n", "u = (d/(Nd*e));//Mobility of electrons.\n", "printf('\nMobility of the electron is %.3f m^2 V^-1 s^-1',u);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.8: hall_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.8.\n", "//Page No.270.\n", "clc;clear;\n", "Bz = 10*10^(-4);//Magnetic field -[Wb/m^2].\n", "I = 1;//Current -[A].\n", "W = 500*10^(-6);//Thickness of the sample -[m].\n", "n = 10^(16);//Donor concentration.\n", "e = 1.6*10^(-19);//Electron charge.\n", "VH = ((Bz*I*3*%pi)/(8*n*e*W));//Hall voltage in the sample.\n", "printf('\nThe Hall voltage in the sample is %3.3e V',VH);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.9: Ratio_between_the_conductivity_of_the_material.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.9.9.\n", "//Page No 271.\n", "clc;clear;\n", "Eg = 1.2*1.6*10^(-19);//Energy gap.\n", "T1 = 300;//Temperature T1 -[K].\n", "T2 = 600;//Temperature T2 -[K].\n", "k = 1.38*10^(-23);//Boltzman's constant.\n", "N = ((T2/T1)^(3/2))*exp((Eg/(2*k))*((1/T1)-(1/T2)))*10^(-3);//Ratio between the conductivity of the material.\n", "printf('\nRatio between the conductivity of the material at 600 K and 300 K is %.2f',N);" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }