{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 7: Crystal imperfection" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.1: Number_of_vacancies_and_vacancy_fraction.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.7.1\n", "//Page No.207\n", "//To find number of vacancies.\n", "clc;clear;\n", "Av = 6.022*10^(26);//Avogadro's constant.\n", "d = 18630;//Density.\n", "Aw = 196.9;//Atomic weight -[g/mol].\n", "k = 1.38*10^(-23);//Boltzman's constant.\n", "T = 900;//Temperature.\n", "Ev = 0.98*1.6*10^(-19);//Energy of formation.\n", "N = ((Av*d)/Aw);//Concentration of atoms.\n", "printf('\nConcentration of atoms = %3.3e m^-3',N);\n", "n = N*exp(-(Ev)/(k*T));//'n' is number of vacancy.\n", "printf('\nThe number of vacancies for gold at 900 degree celcius is %3.3e vacancies per m^3',n);\n", "T1 = 1000;\n", "Vf = exp((-Ev)/(k*T1));//p=(n/N) is the vacancy fraction.\n", "printf('\nVacancy fraction = %3.3e',Vf);\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.2: Energy_for_vacancy_information.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.7.2\n", "//Page No.208.\n", "//To find energy for vacancy information.\n", "clc;clear;\n", "Av = 6.022*10^(26);//Avogadro's constant.\n", "d = 9500;//Density.\n", "Aw = 107.9;//Atomic weight -[g/mol].\n", "k = 1.38*10^(-23);//Boltzman's constant.\n", "T = 1073;//Temperature -[K]\n", "n = 3.6*10^(23);//Number of vacancies -[per m^3].\n", "N = ((Av*d)/Aw);//Concentration of atoms.\n", "printf('\nConcentration of atoms is %3.3e m^-3',N);\n", "Ev = k*T*log(N/n);\n", "printf('\nThe energy for vacancy formation in joules is %3.3e J',Ev);\n", "Ev = Ev/1.6*10^(19);\n", "printf('\nThe energy for vacancy formation in eV is %3.3e eV',Ev);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3: number_of_schottky_defected.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.7.3\n", "//Page No.209.\n", "//To find number of Schottky defected.\n", "clc;clear;\n", "Av = 6.022*10^(26);//Avogadro's constant.\n", "d = 1955;//Density.\n", "Aw = (39.1+35.45);//Atomic weight.\n", "k = 1.38*10^(-23);//Boltzman's constant.\n", "T = 773;//Temperature -[K]\n", "Es = 2.6*1.6*10^(-19);//Energy formation.\n", "N = ((Av*d)/Aw);//Concentration of atoms.\n", "printf('\nConcentration of atoms is %3.3e m^-3',N);\n", "n = N*exp(-(Es)/(2*k*T));\n", "printf('\nThe number of Schottky defect for KCl at 500 degree celcius is %3.3e Schottky defect per m^-3',n);\n", "" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }