{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: Quantum physics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.10: Probability_of_finding_the_practicle.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.10\n", "// Page No.138.\n", "//To find the probability.\n", "clc;clear;\n", "L = 25*10^(-10);//Width of the potential well -[m].\n", "delx = 0.05*10^(-10);//Interval -[m].\n", "x = int(1);\n", "P = (((2*delx)/L)*x);//'P' is the probability of finding the practicle at an interval of 0.05 .\n", "printf('\nThe probability of finding the particle is %.3f',P);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.11: Lowest_energy_of_the_electron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.4.11.\n", "//Page No.138.\n", "clc;clear;\n", "n = 1;//For the lowest energy value n=1.\n", "h = 6.626*10^(-34);//Planck's constant.\n", "L = 1*10^(-10);//Width of the potential well -[m].\n", "m = 9.1*10^(-31);//Mass of the electron.\n", "E = ((n^(2)*h^(2))/(8*m*L^(2)));\n", "E = ((h^(2))/(8*m*L^(2)));// For the lowest energy value n=1.\n", "printf('\nThe lowest energy of the electron in joules is %3.3e J',E);;// Lowest energy of the electron in joules.\n", "E = (E/(1.6*10^(-19)));\n", "printf('\nThe lowest energy of the electron in eV is %.2f eV',E);// Lowest energy of the electron in eV.\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.12: Lowest_energy_of_the_electron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.12.\n", "//Page No.139.\n", "//To find lowest energy of the electron.\n", "clc;clear;\n", "n = 1;//For the lowest energy value n=1.\n", "h = 6.626*10^(-34);//Planck's constant.\n", "L = 1*10^(-10);//Width of the potential well -[m].\n", "m = 9.1*10^(-31);//Mass of the electron.\n", "E = (2*(n^(2)*h^(2))/(8*m*L^(2)));\n", "//'E' is the Lowest energy of the system.\n", "printf('\nThe lowest energy of the system in joules is %3.3e J',E);\n", "E = (E/(1.6*10^(-19)));\n", "printf('\nThe lowest energy of the system in eV is %.2f eV',E);// Lowest energy of the electron in eV." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.13: Lowest_energy_of_the_system.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.13.\n", "//Page No.139.\n", "clc;clear;\n", "h = 6.626*10^(-34);//Planck's constant.\n", "L = 1*10^(-10);//Width of the potential well -[m].\n", "m = 9.1*10^(-31);//Mass of the electron.\n", "E = ((6*h^(2))/(8*m*L^(2)));\n", "printf('\n 1) The lowest energy of the system in joules is %3.3e eV',E);\n", "E = (E/(1.6*10^(-19)));\n", "printf('\n 2) The lowest energy of the system is %.2f eV',E);\n", "disp('3) Quantum numbers are,');\n", "n = 1;\n", "l = 0;\n", "ml = 0;\n", "ms = 0.5;\n", "ms1 = -0.5;\n", "printf('\ni)n = %.0f',n);\n", "printf(' , l = %.0f',l);\n", "printf(' , ml = %.0f',ml);\n", "printf(' , ms = %.1f',ms);\n", "printf('\nii)n = %.0f',n);\n", "printf(' , l = %.0f',l);\n", "printf(' , ml = %.0f',ml);\n", "printf(' , ms1 = %.1f',ms1);\n", "n=2;\n", "printf('\niii)n = %.0f',n);\n", "printf(' , l = %.0f',l);\n", "printf(' , ml = %.0f',ml);\n", "printf(' , ms = %.1f',ms);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.14: mass_of_the_alpha_practical.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.14.\n", "//Page No.140.\n", "//The mass of the particle.\n", "clc;clear;\n", "E = 0.025*1.6*10^(-19);//Lowest energy.\n", "h = 6.626*10^(-34);//Planck's constant.\n", "L = 100*10^(-10);//Width of the well -[m].\n", "m = ((h^(2))/(8*E*L^(2)));\n", "printf('\nThe mass of the particle is %3.3e kg',m);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.15: Energy_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.15.\n", "//Page No.141.\n", "//To find energy density.\n", "clc;clear;\n", "T = 6000;//Temperature -[K].\n", "k = 1.38*10^(-23);//Boltzman's constant.\n", "w1 = 450*10^(-9);//wavelength -[m].\n", "w2 = 460*10^(-9);//wavelength -[m].\n", "c = 3*10^(8);//Velcity of light.\n", "v1=(c/w1);\n", "printf('\nThe velocity for wavelength 450 nm is %3.3e Hz',v1);\n", "v2 = (c/w2);\n", "printf('\nThe velocity for wavelength 460 nm is %3.3e Hz',v2);\n", "v = ((v1+v2)/2);\n", "printf('\nThe average value of v is %3.3e Hz',v);\n", "h = 6.626*10^(-34);//Planck's constant.\n", "d = (8*%pi*h*v^(3))/(c^(3));\n", "dv = d*(1/(exp((h*v)/(k*T))-1));//Energy density.\n", "printf('\nThe energy density of the black body is %3.3e J/m^3',dv);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1: change_in_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No 133.\n", "//Page No 4.1.\n", "//To find change in wavelength.\n", "clc;clear;\n", "h = 6.63*10^(-34);//Planck's constant -[J-s].\n", "m0 = 9.1*10^(-31);//mass of electron -[kg].\n", "c = 3*10^(8);//Velocity of ligth -[m/s].\n", "cosq = cosd(135);//Angle of scattering -[degree].\n", "delW = (h/(m0*c))*(1-cosq);//change in wavelength.\n", "printf('\nThe change in wavelength is %3.3e m',delW);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2: comptom_shift_and_w_and_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.2.\n", "//Page No.134.\n", "clc;clear;\n", "h = 6.626*10^(-34);//Planck's constant.\n", "m0 = 9.1*10^(-31);//mass of electron.\n", "c = 3*10^(8);//Velocity of ligth.\n", "cosq = cosd(90);//Scattering angle -[degree].\n", "delW = (h/(m0*c))*(1-cosq);//Compton's shift\n", "delW = delW*10^(10);\n", "printf('\na)The Comptons shift is %.5f A',delW);\n", "w = 2;//Wavelength -[A]\n", "W = (delW+w);// Wavelength of the scattered photon.\n", "printf('\nb)The wavelength of the scattered photon is % 5f A',W);\n", "E = (h*c)*((1/(w*10^(-10)))-(1/(W*10^(-10))));//Energy of the recoiling electron in joules.\n", "printf('\nc)The energy of the recoiling electron in joules is %3.3e J',E);\n", "E = (E/(1.6*10^(-19)));//Energy of the recoiling electron in eV.\n", "printf('\nc)The energy of the recoiling electron in eV is %3.3e eV',E);\n", "sinq = sind(90);\n", "Q = (((h*c)/w)*sinq)/(((h*c)/w)-((h*c)/W)*cosq);\n", "theta = atand(Q);\n", "printf('\ne)The angle at which the recoiling electron appears is %.0f degree',theta); " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3: comptom_shift_and_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.3.\n", "//Page NO.135.\n", "clc;clear;\n", "h = 6.626*10^(-34);//Planck's constant.\n", "mo = 9.1*10^(-31);//mass of electron.\n", "c = 3*10^(8);//Velocity of ligth.\n", "w = (1*1.6*10^(-19)*10^(6));//wavelength.\n", "cosq = cosd(60);\n", "delw = ((h/(mo*c))*(1-cosq));//Compton shift\n", "delw = delw*10^(10);\n", "printf('\n1)The Comptons shift = %.3f A',delw);\n", "E = ((h*c)/w);//energy of the incident photon.\n", "W = (delw+E);//Wavelength of the scattered photon.\n", "W = (0.012)+(1.242);\n", "printf('\n3)The wavelength of the scattered photon = %.3f A',W);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.4: Number_of_photons_emitted.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No 135.\n", "//Page No 4.4.\n", "//To find number of photons.\n", "clc;clear;\n", "h = 6.63*10^(-34);//Planck's constant.\n", "c = 3*10^(8);//Velocity of ligth.\n", "w = 5893*10^(-10);//wavelength.\n", "Op = 60;//output power -[W].\n", "E =((h*c)/w);\n", "printf('\nEnergy of photon in joules is %3.3e J',E);//Energy of photon in joules.\n", "hv = (E/(1.6*10^(-19)));//Energy of photon in eV.\n", "printf('\nEnergy of photon in eV is %.3f eV',hv);\n", "Ps = ((Op)/(E));\n", "Ps = ((60)/(E));// Number of photons emitted per second.\n", "printf('\nThe number of photons emitted per second is %3.3e photons per second',Ps);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.5: Mass_and_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No 136.\n", "//Page No 4.5.\n", "//To find mass,momentum & energy of photon.\n", "clc;clear;\n", "h = 6.63*10^(-34);//Planck's constant.\n", "c = 3*10^(8);//Velocity of ligth.\n", "w = 10*10^(-10);//wavelength.\n", "E = ((h*c)/w);//Energy.\n", "printf('\n1)The energy of photon in joules is %3.3e J',E);\n", "E = E/(1.6*10^(-19)*10^(3));\n", "printf('\n2)The energy of photon in eV is %.3f Kev',E);\n", "p = (h/w);//Momentum.\n", "p = ((6.63*10^(-34))/(10*10^(-10)));\n", "printf('\n3)The momentum of the photon is %3.3e kg.m/s',p)\n", "m = (h/(w*c));\n", "printf('\n4)The mass of the photon is %3.3e kg',m);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6: DeBroglie_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No 136.\n", "//Page No 4.6.\n", "//To find de-Broglie wavelength.\n", "clc;clear;\n", "V=1.25*10^(3);//Potential difference applied -[V].\n", "w=((12.27)/sqroot(V));//de-Broglie wavelength of electron.\n", "printf('\nThe de-Broglie wavelength of electron is %.3f A',w);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.7: wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.136 .\n", "//Page No. 4.7.\n", "//To find de-Broglie wavelength.\n", "clc;clear;\n", "E = 45*1.6*10^(-19);//Energy of the electron.\n", "h = 6.63*10^(-34);//Planck's constant\n", "m = 9.1*10^(-31);//Mass of the electron.\n", "w = h/(sqrt(2*m*E));//de-Broglie wavelength.\n", "printf('\nThe de-Broglie wavelength of the photon is %3.3e m',w);\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.8: De_Broglie_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No.4.8.\n", "//Page No.137.\n", "//To find de-Broglie wavelength.\n", "clc;clear;\n", "h=6.626*10^(-34);//Planck's constant.\n", "v=10^(7);//Velocity of the electron -[m/s].\n", "m=9.1*10^(-31);//Mass of the electron.\n", "w=(h/(m*v));//de-Broglie wavelength\n", "printf('\nThe de-Broglie wavelength is %3.3e m',w);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.9: Wavelength_of_alpha_practical.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "//Example No 137.\n", "//Page No 4.9.\n", "//The de-Broglie wavelength of alpha particle.\n", "clc;clear;\n", "V = 1000;//Potential difference applied -[V].\n", "h = (6.626*10^(-34));//Planck's constant -[J-s].\n", "m = (1.67*10^(-27));//Mass of a proton -[kg].\n", "e = (1.6*10^(-19));//charge of electron -[J].\n", "w = h/sqrt(2*m*e*V);//de-Broglie wavelength\n", "printf('\nThe de-Broglie wavelength of alpha particle = %3.3e m',w);" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }