{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: Laser" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.10: angular_spread_and_divergence.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.10.\n", "// Page No.62.\n", "clc;clear;\n", "w = 632.8*10^(-9);//wavelength -[m]\n", "D = 5;//Distance -[m].\n", "d = 1*10^(-3);//Diameter -[m].\n", "deltheta = (w/d);//Angular Spread.\n", "printf('\nThe angular spread is %3.3e radian',deltheta);\n", "r = (D*(deltheta));\n", "r = (5*(deltheta));//Radius of the spread\n", "printf('\nThe radius of the spread is %3.3e m',r); //Radius of the spread.\n", "As = ((%pi)*r^(2));//Area of the spread\n", "printf('\nThe area of the spread is %3.3e m^2',As);//Area of the spread.\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1: number_of_photons_emitted_per_second.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.1.\n", "// Page No.59.\n", "clc;clear;\n", "p = 5*10^(-3);// output power -[W].\n", "w = 632.8*10^(-9);//wavelength -[m].\n", "h = 6.626*10^(-34);//Planck's constant.\n", "c = (3*10^(8));//Velocity of light.\n", "hv = ((h*c)/(w));// Energy of one photon\n", "printf('\nThe energy of one photon in joules is %3.3e J', hv);\n", "hv = hv/(1.6*10^(-19));\n", "printf('\nThe energy of one photon in eV is %.2f eV',hv);\n", "Np = (p/(3.14*10^(-19)));//Number of photons emitted\n", "printf('\nThe number of photons emitted per second by He-Ne laser are %3.3e photons per second',Np);\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2: Energy_of_the_photon.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.2.\n", "// Page No.60.\n", "clc;clear;\n", "w = 632.8*10^(-9);//wavelength -[m].\n", "h = 6.626*10^(-34);//Planck's constant.\n", "c = (3*10^(8));//Velocity of light.\n", "E = ((h*c)/(w));// Energy of one photon\n", "printf('\nThe energy of emitted photon in joules is %3.3e J',E);\n", "E = E/(1.6*10^(-19));\n", "printf('\nThe energy of emitted photon in eV is %.2f eV',E);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3: Energy_of_E3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.3.\n", "// Page No.60.\n", "clc;clear;\n", "w = 1.15*10^(-6);//wavelength -[m].\n", "h = 6.626*10^(-34);\n", "c = (3*10^(8));\n", "hv = ((h*c)/(w));// Energy of one photon\n", "printf('\n The energy of emitted photon is %3.3e J',hv);\n", "E = ((hv)/(1.6*10^(-19)));\n", "printf('\n The energy of emitted photon is %.3f eV',E);\n", "E1 = 0,'eV';//Value of first energy level.\n", "E2 = 1.4,'eV';//Value of second energy level.\n", "E3 = (E2+E);//Energy value of 'E3'.\n", "E3 = ((1.4)+E);\n", "printf('\n The value of E3 energy level is %.3f eV',E3);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4: wavelength_of_the_photon.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.4;\n", "//Page No.60;\n", "clc;clear;\n", "E1 = 3.2;//Value of higher energy level E1 -[eV].\n", "E2 = 1.6;//Value of lower energy level E2 -[eV].\n", "E = (E1-E2);//Energy difference.\n", "printf('\nThe energy difference is %.1f eV', E);\n", "h = 6.626*10^(-34);//Planck's constant\n", "c = 3*10^(8);//Velocity of light.\n", "E = 1.6*1.6*10^(-19);\n", "w = ((h*c)/(E));\n", "printf('\nThe wavelength of the photon is %3.3e m', w);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5: wavelength_of_the_laser.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.5.\n", "// Page No.60.\n", "clc;clear;\n", "E = 1.42;//Bandgap of Ga-As -[eV]\n", "h = 6.626*10^(-34);//Planck's constant.\n", "c = 3*10^(8);//Velocity of light.\n", "w = ((h*c)/(E*1.6*10^(-19)));\n", "printf('\nThe wavelength of the laser emitted by GaAs is %3.3e m',w);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6: Relative_population_between.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.6.\n", "// Page No.61.\n", "clc;clear;\n", "T = 300;//Temperature -[K]\n", "K = 1.38*10^(-23);//Boltzman's constant.\n", "w = 500*10^(-9);//wavelength -[m].\n", "h = 6.626*10^(-34);//Planck's constant.\n", "c = (3*10^(8));//velocity of light.\n", "//By Maxwell's and Boltzman's law.\n", "N = exp((h*c)/(w*K*T)); //Relative population.\n", "printf('\nThe relative population between energy levels N1 and N2 is %3.3e',N);//(Relative population between N1 & N2)." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.7: Ratio_between_stimulated_and_spontaneous_emission.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.7.\n", "// Page No.61.\n", "clc;clear;\n", "T = 300;//Temperature -[K]\n", "K = 1.38*10^(-23);//Boltzman's constant\n", "w = 600*10^(-9);//wavelength-[m]\n", "h = 6.626*10^(-34);\n", "v = (3*10^(8));//velocity.\n", "S = (1/((exp((h*v)/(w*K*T)))-1));//Se=stimulated emission & SPe= spontaneous emission\n", "printf('\nThe ratio between stimulated emission and spontaneous emission is %3.3e.\nTherefore, the stimulated emission is not possible in this condition.',S);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.8: Efficiency_of_laser.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.8.\n", "// Page No.62.\n", "clc;clear;\n", "Op = 5*10^(-3);//Output power -[W].\n", "I = 10*10^(-3);//Current -[A].\n", "V = 3*10^(3);//Voltage -[V].\n", "Ip = (10*10^(-3)*3*10^(3));//Input power.\n", "Eff = (((Op)/(Ip))*(100));//Efficiency of the laser.\n", "printf('\nThe efficiency of the laser is %.6f percent',Eff);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.9: Intensity_of_the_laser.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "//Example No.2.9.\n", "// Page No.62.\n", "clc;clear;\n", "P = 1*10^(-3);//Output power -[W].\n", "D = 1*10^(-6);//Diameter -[m].\n", "r = 0.5*10^(-6);//Radius -[m]\n", "I = (P/(%pi*r^(2)));// Intensity of laser.\n", "printf('\nThe intensity of the laser is %3.3e W/m^2',I);" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }