{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Ultrasonics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.1: Calculating_frequency_of_the_Oscillator.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 Example 1 \n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "P = 1; // for fundamental mode\n", "t = 0.1*10^-2; // thickness of piezo electric crystal\n", "E = 80*10^9 // young's modulus\n", "p = 2654 // density in kg/m^3\n", "\n", "//Calculations\n", "\n", "f = (P/(2*t))*sqrt(E/p); // frequency of the oscillator circuit\n", "\n", "//Output\n", "mprintf('The Frequency of the oscillator circuit = %e Hz',f);\n", "\n", "//==============================================================================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2: Calculating_Frequency_of_the_vibrating_crystal.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 Example 2 \n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "P = 1; // for fundamental mode\n", "t = 0.1*10^-2; // thickness of piezo electric crystal\n", "E = 7.9*10^10 // young's modulus\n", "p = 2650 // density in kg/m^3\n", "\n", "//Calculations\n", "\n", "f = (P/(2*t))*sqrt(E/p); // frequency of the oscillator circuit\n", "\n", "//Output\n", "mprintf('The Frequency of the vibrating crystal = %3.3f MHz',f/10^6);\n", "\n", "//==============================================================================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.3: Finding_velocity_of_ultrasonic_wave.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 Example 3\n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "f = 1.5*10^6; //frequency of ultrasonics in Hz\n", "d6 = 2.75*10^-3; // distance between 6 consecutive nodes\n", "\n", "//Calculations\n", "d = d6/5; // distance b/w two nodes\n", "lamda = 2*d; // wavelength in m\n", "v = f*lamda; // velocity of ultrasonics\n", "\n", "//Output\n", "mprintf('Velocity of ultrasonics = %3.0f m/sec',v);\n", "\n", "//============================================================================== " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.a_1: calculating_fundamental_frequency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 addl_Example 1 \n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "P = 1; // for fundamental mode\n", "t = 1.5*10^-3; // thickness of quartz crystal\n", "E = 7.9*10^10 // young's modulus in N/m^2\n", "p = 2650 // density in kg/m^3\n", "\n", "//Calculations\n", "\n", "f = (P/(2*t))*sqrt(E/p); // frequency of the oscillator circuit\n", "\n", "//Output\n", "mprintf('The Fundamental Frequency of the Quartz crystal = %3.4f MHz',f/10^6);\n", "\n", "//==============================================================================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.a_2: Finding_Thickness.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 addl_Example 2 \n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "v = 5000; // velocity of ultrasonics in m/s\n", "df = 60*10^3; // difference b/w two adjacent harmonic freq. in Hz\n", "\n", "//Calculations\n", "\n", "d = v/(2*df) ; // thickness of steel plate\n", "\n", "//Output\n", "mprintf('The thickness of steel plate = %f m',d);\n", "\n", "//==============================================================================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.a_3: Finding_depth_of_submerged_submarine.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 addl_Example 3 \n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "v = 1440; // velocity of ultrasonics in sea water in m/s\n", "t = 0.33 // time taken b/w tx and rx in sec\n", "\n", "//Calculations\n", "\n", "d = v*t; // distance travelled by ultrasonics\n", "D = d/2; // depth of submerged submarine in m\n", "\n", "//output\n", "mprintf('Depth of submerged submarine = %3.1f m',D);\n", "\n", "//==============================================================================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.a_4: Finding_velocity_of_ultrasonics.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 addl_Example 4 \n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "d = 0.55*10^-3; // distance b/w two antinodes\n", "f = 1.5*10^6; // freq of the crystal\n", "\n", "//Calculations\n", "\n", "lamda = 2*d; // wavelength\n", "v = f*lamda; // velocity of ultronics\n", "\n", "//Output\n", "mprintf('Velocity of waves in sea water = %3.0f m/s',v);\n", "\n", "//==============================================================================" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.a_5: Finding_Youngs_modulus_and_thickness_of_crystal.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 1 addl_Example 5 \n", "//==============================================================================\n", "clc;\n", "clear;\n", "\n", "//input data\n", "\n", "P = 1; // for fundamental mode\n", "p = 2660 // density of quartz in kg/m^3\n", "f = 1300*10^3 // freq of quartz plate for sub division ii\n", "k = 2.87*10^3\n", "//f1 = (k)/t // freq for sub division i\n", "\n", "//Calculations\n", "\n", "//f = (P/(2*t))*sqrt(E/p); \n", "E = p*4*(k)^2; //Youngs modulus in N/m^2\n", "t = (P/(2*f))*sqrt(E/p); \n", "\n", "\n", "//Output\n", "mprintf('Youngs modulus of quartz plate = %e Nm^-2\n Thickness of the crystal = %e m',E,t);\n", "\n", "//==============================================================================" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }