{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 24: Mechanical Vibrations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 24.10: Pendulum_Motion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "l=1 // m // length of the simple pendulum\n", "g=9.81 // m/s^2\n", "// Calculations\n", "// Let t_s be the time period when the elevator is stationary\n", "t_s=2*%pi*sqrt(l/g) /// seconds\n", "// Let t_u be the time period when the elevator moves upwards. Then from eqn 1\n", "t_u=2*%pi*sqrt((l)/(g+(g/10))) // seconds\n", "// Let t_d be the time period when the elevator moves downwards.\n", "t_d=2*%pi*sqrt(l/(g-(g/10))) // seconds\n", "// Results\n", "clc\n", "printf('The time period of oscillation of the pendulum for upward acc of the elevator is %f seconds \n',t_u)\n", "printf('The time period of oscillation of the pendulum for downward acc of the elevator is %f seconds \n',t_d)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 24.11: Pendulum_Motion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "t=1 // second // time period of the simple pendulum\n", "g=9.81 // m/s^2\n", "// Calculations\n", "// Length of pendulum is given as,\n", "l=(t/(2*%pi)^2)*g // m\n", "// Let t_u be the time period when the elevator moves upwards. Then the time period is given as,\n", "t_u=2*%pi*sqrt((l)/(g+(g/10))) // seconds\n", "// Let t_d be the time period when the elevator moves downwards.\n", "t_d=2*%pi*sqrt(l/(g-(g/10))) // seconds\n", "// Results\n", "clc\n", "printf('The time period of oscillation of the pendulum for upward acc of the elevator is %f seconds \n',t_u)\n", "printf('The time period of oscillation of the pendulum for downward acc of the elevator is %f seconds \n',t_d)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 24.12: Pendulum_Motion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "m=15 // kg // mass of the disc\n", "D=0.3 // m // diameter of the disc\n", "R=0.15 // m // radius\n", "l=1 // m // length of the shaft\n", "d=0.01 // m // diameter of the shaft\n", "G=30*10^9 // N-m^2 // modulus of rigidity\n", "// Calculations\n", "// M.I of the disc about the axis of rotation is given as,\n", "I=(m*R^2)/2 // kg-m^2\n", "// Stiffness of the shaft\n", "k_t=(%pi*d^4*G)/(32*l) // N-m/radian\n", "t=2*%pi*sqrt(I/k_t) // seconds\n", "// Results\n", "clc\n", "printf('The time period of oscillations of the disc is %f seconds \n',t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 24.1: Simple_Harmonic_Motion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "f=1/6 // oscillations/second\n", "x=8 // cm // distance from the mean position\n", "// Calculations\n", "omega=2*%pi*f\n", "// Amplitude is given by eq'n \n", "r=sqrt((25*x^2)/16) // cm\n", "// Maximum acceleration is given as,\n", "a_max=(%pi/3)^2*10 // cm/s^2\n", "// Velocity when it is at a dist of 5 cm (assume s=5 cm) is given by\n", "s=5 // cm\n", "v=omega*sqrt(r^2-s^2) // cm/s\n", "// Results\n", "clc\n", "printf('(a) The amplitude of oscillation is %f cm \n',r)\n", "printf('(b) The maximum acceleration is %f cm/s^2 \n',a_max)\n", "printf('(c) The velocity of the particle at 5 cm from mean position is %f cm/s \n',v)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 24.2: Simple_Harmonic_Motion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "x_1=0.1 // m // assume the distance of the particle from mean position as (x_1 & x_2)\n", "x_2=0.2// m \n", "// assume velocities as v_1 & v_2\n", "v_1=1.2 // m/s\n", "v_2=0.8 // m/s\n", "// Calculations\n", "// The amplitude of oscillations is given by dividing eq'n 1 by 2 as,\n", "r=sqrt(0.32/5) // m\n", "omega=v_1/(sqrt(r^2-x_1^2)) // radians/second\n", "t=(2*%pi)/omega // seconds\n", "v_max=r*omega // m/s\n", "// let the max acceleration be a which is given as,\n", "a=r*omega^2 // m/s^2 \n", "// Results\n", "clc\n", "printf('(a) The amplitude of oscillations is %f m \n',r)\n", "printf('(b) The time period of oscillations is %f seconds \n',t)\n", "printf('(c) The maximum velocity is %f m/s \n',v_max)\n", "printf('(d) The maximum acceleration is %f m/s^2 \n',a) // the value of max acc is incorrect in the textbook\n", "// NOTE: the value of t is incorrect in the text book\n", "// The values may differ slightly due to decimal point accuracy" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 24.5: Equivalent_spring_constant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variabes\n", "W=50 // N // weight\n", "x_0=0.075 // m // amplitude\n", "f=1 // oscillation/sec // frequency\n", "g=9.81 \n", "// Calculations\n", "omega=2*%pi*f\n", "K=(((2*%pi)^2*W)/g)*(10^-2) // N/cm\n", "// let the total extension of the string be delta which is given as,\n", "delta=(W/K)+(x_0*10^2) // cm\n", "T=K*delta // N // Max Tension\n", "v=omega*x_0 //m/s // max velocity\n", "// Results\n", "clc\n", "printf('(a) The stiffness of the spring is %f N/cm \n',K)\n", "printf('(b) The maximum Tension in the spring is %f N \n',T)\n", "printf('(c) The maximum velocity is %f m/s \n',v)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }