{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15: Curvilinear motion of a particle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.10: Equations_of_dynamic_equilibrium.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "mu_a=0.40 // coefficient of friction under block A\n", "n=40 // r.p.m // speed of rotation of frame\n", "W_A=120 // N // weight of block A\n", "W_B=80 // N // weight of block B\n", "r_1=1.2 // m // distance between W_A & axis of rotation\n", "r_2=1.6 // m // distance between W_B & axis of rotation\n", "g=9.81 // m/s^2\n", "// Calculations\n", "// Consider the F.B.D of block A\n", "N=W_A // N // sum F_y=0\n", "omega=(2*%pi*n)/60 // rad/sec\n", "a_n=omega^2*r_1 // m/s^2\n", "T=((W_A/g)*a_n)-(mu_a*W_A) // N\n", "// Now consider the F.B.D of block B\n", "A_n=omega^2*r_2 // m/s^2\n", "N_1=(W_B/g)*A_n // N // sum F_x=0\n", "mu=(T-W_B)/N_1 // sum F_x=0\n", "// Results\n", "clc\n", "printf('The coefficient of friction of block B is %f \n',mu)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.12: Motion_of_particle_on_curved_frictionless_path.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "W=10000 // N // Weight of the locomotive\n", "// Calculations\n", "// Consider the various derivations given in the textbook\n", "R_max=W/20 // N // eq'n for max reaction\n", "// The position of occurence of maximum thrust cannot be defined here. Refer textbook for the answer\n", "// Results\n", "clc\n", "printf('The maximum lateral thrust is %f N \n',R_max)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.13: motion_of_a_particle_on_curved_frictionless_path.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "W=10 // N // Weight of the ball\n", "// Calculations\n", "// consider the eq'n derived to find the reaction, given as\n", "R=W*(1+((2*%pi^2)/9)) // N \n", "// Results\n", "clc\n", "printf('The value of the reaction is %f N \n',R)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.15: Motion_of_a_particle_in_a_curved_frictionless_path.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "P=50 // N // Weight of ball P\n", "Q=50 // N // Weight of ball Q\n", "R=100 // N // Weight of the governing device\n", "l=0.3 // m // length of each side\n", "theta=30 // degree\n", "g=9.81 // m/s^2 // acc due to gravity\n", "// Calculations\n", "// Consider the respective F.B.D\n", "r=l*sind(theta) // m // Radius of circe\n", "// On solving eqn's 1,2 &3 we get the value of v as,\n", "v=sqrt(((Q+R)*g*r)/((sqrt(3))*Q)) // m/s \n", "// But the eq'n v=omega*r we get the value of N as,\n", "N=(60*v)/(2*%pi*r) // r.p.m \n", "// Results\n", "clc\n", "printf('The speed of rotation is %f r.p.m \n',N)\n", "// NOTE: In the text book (A.K. Tayal) this sum is numbered as 'EXAMPLE 15.14' which is incorrect." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.16: Motion_of_a_particle_in_a_curved_frictionless_path.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "Q=20 // N // Weight of the governor device\n", "W=10 // N // Weight of the fly balls\n", "theta=30 // degree // angle between the vertical shaft and the axis AB\n", "l=0.2 // m // length of the shaft\n", "g=9.81 // m/s^2 // acc due to gravity\n", "// Calculations\n", "// Consider the respective F.B.D\n", "// Radius of the circle is given as,\n", "r=Q*sind(theta)*(10^-2) // m \n", "// Solving eq'n 1 & 2 for v. The eq'n for v is given as,\n", "v=sqrt(((W*l*0.5)+(0.05*Q))/((W*0.2*sqrt(3))/(2*g*r))) // m/s\n", "// But, v=r*omega=2*pi*N*r/60. From this eq'n we get N as,\n", "N=(v*60)/(2*%pi*r) // r.p.m.\n", "// Results\n", "clc\n", "printf('The speed of the fly-balls is %f r.p.m \n',N)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.18: Motion_of_vehicles_on_leveled_and_banked_roads.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "r=50 // m // radius of the road\n", "mu=0.15 // coefficient of friction between the wheels and the road\n", "g=9.81 // m/s^2 // acc due to gravity\n", "// Calculations\n", "// The eq'n fo max speed of the vehicle without skidding is \n", "v=sqrt(mu*g*r) // m/s\n", "// The angle theta made with the vertical while negotiating the corner is \n", "theta=atand(v^2/(g*r)) // degree\n", "// Results\n", "clc\n", "printf('The maximum speed with which the vehicle can travel is %f m/s \n',v)\n", "printf('The angle made with the vertical is %f degree \n',theta)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.19: Motion_of_vehicles_on_leveled_and_banked_roads.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "v=100*(1000/3600) // m/s // or 100 km/hr\n", "r=250 // m // radius of the road\n", "g=9.81 // m/s^2 // acc due to gravity\n", "// Calculations\n", "// The angle of banking is given by eq'n,\n", "theta=atand((v^2)/(g*r)) // degree \n", "// Results\n", "clc\n", "printf('The angle of banking of the track is %f degree \n',theta)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.20: Motion_of_vehicles_on_leveled_and_banked_roads.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "W=10000 // N // Weight of the car\n", "r=100 // m // radius of the road\n", "v=10 // m/s // speed of the car\n", "h=1 // m // height of the C.G of the car above the ground\n", "b=1.5 // m // distance between the wheels\n", "g=9.81 // m/s^2 // acc due to gravity\n", "// Calculations\n", "// The reactions at the wheels are given by te eq'ns:\n", "R_A=(W/2)*(1-((v^2*h)/(g*r*b))) // N // Reaction at A\n", "R_B=(W/2)*(1+((v^2*h)/(g*r*b))) // N // Reaction at B\n", "// The eq'n for max speed to avoid overturning on level ground is,\n", "v_max=sqrt((g*r*(b/2))/(h)) // m/s\n", "// Results\n", "clc\n", "printf('The reaction at Wheel A (R_A) is %f N \n',R_A)\n", "printf('The reaction at Wheel B (R_B) is %f N \n',R_B)\n", "printf('The maximum speed at which the vehicle can travel without the fear of overturning is is %f m/s \n',v_max)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.21: Motion_of_vehicles_on_leveled_and_banked_roads.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "W=1 // N // Weight of the bob\n", "theta=8 // degree // angle made by the bob with the vertical\n", "r=100 // m // radius of the curve\n", "g=9.81 // m/s^2 // acc due to gravity\n", "// Calculations\n", "// from eq'n 1 & 2 we get v as,\n", "v=(sqrt(g*r*tand(theta)))*(3600/1000) // km/hr \n", "T=W/cosd(theta) // N // from eq'n 2\n", "// Results\n", "clc\n", "printf('The speed of the cariage is %f km/hr \n',v)\n", "printf('The tension in the chord is %f N \n',T)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2: Components_of_Acceleration.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "r=200 // m // radius of the curved road\n", "v_1=72*(1000/3600) // m/s // initial speed of the car\n", "v_2=36*(1000/3600) // m/s // speed of the car after 10 seconds\n", "t=10 // seconds\n", "// Calculations\n", "A_n=v_1^2/r // m/s^2 // normal component of acceleration\n", "A_t=0 // since dv/dt=0 // tangential component of acceeration\n", "delv=v_1-v_2\n", "delt=t-0\n", "a_t=delv/delt // m/s^2 // tangential component of deceleration after the brakes are applied\n", "a_n=v_1^2/r // m/s^2 // normal component of deceleration after the brakes are applied\n", "// Results\n", "clc\n", "printf('The normal component of acceleration is %f m/s^2 \n',A_n)\n", "printf('The tangential component of acceleration is %f m/s^2 \n',A_t)\n", "printf('The normal component of deceleration is %f m/s^2 \n',a_n)\n", "printf('The tangential component of deceleration is %f m/s^2 \n',a_t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3: Components_of_Acceleration.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Iintilization of variables\n", "r=250 // m // radius of the curved road\n", "a_t=0.6 // m/s^2 // tangential acceleration\n", "a=0.75 // m/s^2 // total acceleration attained by the car\n", "// Calculations\n", "a_n=sqrt(a^2-a_t^2) // m/s^2\n", "v=sqrt(a_n*r) // m/s\n", "// Using v=u+a*t\n", "u=0\n", "t=v/a_t // seconds\n", "// Now using v^2-u^2=2*a*s\n", "s=v^2/(2*a_t) // m\n", "// Results\n", "clc\n", "printf('The distance traveled by the car is %f m \n',s)\n", "printf('The time for which the car travels is %f seconds \n',t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.5: Morion_of_a_particle_on_a_curved_frictionless_path.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "v=10 // m/s // speed of the car\n", "r=200 // m // radius of the road\n", "t=15 // seconds\n", "// Calculations\n", "omega=(v/r) // radian/seconds // angular velocity of the car\n", "// Velocity in x & y direction is given by eq'n\n", "v_x=omega*r*sind(omega*(180/%pi)*t) // m/s // value of v_x is -ve but we consider it to be +ve for calculations\n", "v_y=omega*r*cosd(omega*(180/%pi)*t) // m/s\n", "// Acceleration in x & y direction is given by\n", "a_x=omega^2*r*cosd(omega*(180/%pi)*t) // m/s^2 // value of a_x is -ve but we consider it to be +ve for calculations\n", "a_y=omega^2*r*sind(omega*(180/3.14)*t) // m/s^2 // value of a_y is -ve but we consider it to be +ve for calculations\n", "a=sqrt(a_x^2+a_y^2) // m/s^2 // total acc\n", "phi=atand(a_y/a_x) // degrees // direction of acceleration\n", "// Components in tangential and normal directions\n", "// Velocity\n", "v_n=0 // m/s\n", "v_t=v // m/s\n", "// Acceleration\n", "a_n=v^2/r // m/s^2 // normal acc\n", "a_t=0 // tangential acc\n", "// angular position of the car after 15 sec \n", "theta=omega*(180/%pi)*t // degrees\n", "// Results\n", "clc\n", "printf('The component of velocity in X direction (v_x) is %f m/s \n',v_x)\n", "printf('The component of velocity in Y direction (v_y) is %f m/s \n',v_y)\n", "printf('The component of acceleration in X direction (a_x) is %f m/s^2 \n',a_x)\n", "printf('The component of acceleration in Y direction (a_y) is %f m/s^2 \n',a_y)\n", "printf('The total acceleration is %f m/s^2 and its direction is %f degrees \n',a,phi)\n", "printf('The normal acceleration is %f m/s^2 and tangential acceleration is %f m/s^2 \n',a_n,a_t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.6: Motion_of_a_particle_on_a_curved_frictionless_path.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Initilization of variables\n", "t=1 // seconds\n", "pi=3.14\n", "// Calculations\n", "// From the equations of r and theta given we find 1st & 2nd derative and substitute t=1sec Here we consider the 1st derative as r_1 & theta_1 and so on...\n", "r=(1.25*t^2)-(0.9*t^3) // m\n", "r_1=(1.25*(2*t))-(0.9*(3*t^2)) // m/s\n", "r_2=2.5-(0.9*3*(2*t)) // m/s^2\n", "theta=(pi/2)*(4*t-3*t^2) // radian\n", "theta_1=(pi/2)*(4-(6*t)) // rad/second\n", "theta_2=(pi/2)*(0-(6*t)) // rad/second^2\n", "// Velocity of collar P\n", "v_r=r_1 // m/s\n", "v_theta=r*theta_1 // m/s\n", "v=sqrt(v_r^2+v_theta^2) // m/s\n", "alpha=atand(v_theta/v_r) // degree\n", "// Acceleration of the collar P\n", "a_r=r_2-(r*theta_1^2) // m/s^2\n", "a_theta=(r*theta_2)+(2*r_1*theta_1) // m/s^2\n", "a=sqrt(a_r^2+a_theta^2) // m/s^2\n", "beta=atand(a_theta/a_r) // degree\n", "// Acceleration of collar P relative to the rod. Let it be a_relative\n", "a_relative=r_2 // m/s^2 // towards O\n", "// Calculations\n", "clc\n", "printf('The velocity of the collar is %f m/s \n',v)\n", "printf('The accelaration of the collar is %f m/s^2 \n',a)\n", "printf('The acceleration of the collar relative to the rod is %f m/s^2 \n',a_relative)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.7: Components_of_motion.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Consider the eq'ns of motion from the book\n", "// The notations have been changed for the derivatives of r & theta\n", "// (1) At t=0 s\n", "theta_0=0\n", "theta_1=2*%pi // rad/s\n", "theta_2=0\n", "r_0=0\n", "r_1=10 // cm/s\n", "r_2=0\n", "// At t=0.3 s\n", "t=0.3 // sec\n", "theta=2*%pi*t // rad\n", "theta1=2*%pi // rad/s\n", "theta2=0\n", "r=10*t // cm\n", "r1=10 // cm/s\n", "r2=0\n", "// (i) \n", "//Velocity\n", "v_r=r_1 // cm/s\n", "v_theta=r_0*theta_1\n", "v=sqrt(v_r^2+v_theta^2) // cm/s\n", "// Acceleration\n", "a_r=r_2-(r_0*theta_1^2) // cm/s^2\n", "a_theta=(r_0*theta_2)+(2*r_1*theta_1) // cm/s^2\n", "a=sqrt(a_r^2+a_theta^2) // cm/s^2\n", "// (ii)\n", "// Velocity\n", "V_R=r1 // cm/s\n", "V_theta=r*theta1 // cm/s\n", "V=sqrt(V_R^2+V_theta^2) // cm/s\n", "// Acceleration\n", "A_r=r2-(r*theta1^2) // cm/s^2\n", "A_theta=(r*theta2)+(2*r1*theta1) // cm/s^2\n", "A=sqrt(A_r^2+A_theta^2) // cm/s^2\n", "// Results\n", "clc\n", "printf('The velocity and the acceleration of the partice at t=0 s is %f cm/s & %f cm/s^2 \n',v,a)\n", "printf('The velocity and the acceleration of the partice at t=0.3 s is %f cm/s & %f cm/s^2 \n',V,A)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.9: Equations_of_dynamic_equilibrium.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Calculations\n", "// Tension in the wire before it is cut\n", "T_ab=1/((2.747*0.643)+(0.766)) // From eqn's 1 & 2..Here T_ab is multiplied with W (i.e weight of small ball) \n", "T_AB=cosd(40) // Tension in the wire after the wire is cut. Again T_AB is multiplied with W.\n", "// Results\n", "clc\n", "printf('The tension in the wire before and after it is cut is respectively %f W & %f W \n',T_ab,T_AB)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }