{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: Steam Generation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.10: Example_10.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "m=150000 //lb\n", "P1=1000 //psia\n", "Ts=900 //F\n", "Tf=200 //F\n", "//calculations\n", "disp('From mollier charts,')\n", "h2=1448.2 //Btu/lb\n", "hf=167.99 //Btu/lb\n", "correc=2.2 //Btu/lb\n", "hc=hf+correc\n", "Q=m*(h2-hc)\n", "//results\n", "printf('Heat absorption = %d Btu/hr',Q)\n", "disp('The answer is a bit different due to rounding off error in textbook')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.11: Example_11.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "m=150000 //lb\n", "P1=1000 //psia\n", "Ts=900 //F\n", "Tf=200 //F\n", "//calculations\n", "disp('From mollier charts,')\n", "h2=1448.2 //Btu/lb\n", "hf=167.99 //Btu/lb\n", "correc=2.2 //Btu/lb\n", "hc=hf+correc\n", "Q=m*(h2-hc)\n", "output=Q/1000\n", "//results\n", "printf('Output of the steam generating unit = %d kB/hr',output)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.12: Example_12.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "m=150000 //lb\n", "P1=1000 //psia\n", "Ts=900 //F\n", "Tf=200 //F\n", "m2=21000 //lb\n", "HV=12000 //Btu/lb\n", "//calculations\n", "disp('From mollier charts,')\n", "h2=1448.2 //Btu/lb\n", "hf=167.99 //Btu/lb\n", "correc=2.2 //Btu/lb\n", "hc=hf+correc\n", "Q=m*(h2-hc)\n", "output=Q\n", "inpu=m2*HV\n", "eta=output/inpu\n", "//results\n", "printf('Efficiency of the steam generating unit = %.1f percent',eta*100)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.13: Example_13.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "hv=11780 //Btu/lb\n", "steam=55000 //lb/hr\n", "coal=6480 //lb\n", "x1=0.66\n", "x2=0.044\n", "x3=0.079\n", "x4=0.015\n", "x5=0.11\n", "z1=14.5\n", "z2=0.2\n", "z3=4.4\n", "z4=80.9\n", "xash=0.076\n", "xmois=0.115\n", "yc=0.21\n", "refuse=622 //lb/hr\n", "cp=0.24\n", "tg=400 //F\n", "ta=70 //F\n", "Qco=10160 //Btu/lb\n", "Qc=14600 //Btu/lb\n", "//calculations\n", "disp('From steam tables,')\n", "hf=269.6 //Btu/lbm\n", "hfg=1.5 //Btu/lbm\n", "h1=hf+hfg\n", "h2=1196.5\n", "Qb=h2-h1\n", "h3=1407.7 //Btu/lbm\n", "Qs=h3-h2\n", "h4=h3-h1\n", "out=steam*h4/1000\n", "eff=steam*h4/(coal*hv)\n", "//Energy balance\n", "Ci=coal*x1\n", "Cr=refuse*yc\n", "Cb=(Ci-Cr)/coal\n", "lbt= z1*44+z2*28+z3*32+z4*28\n", "lbC=z1*12+z2*12\n", "dry=lbt/lbC *Cb\n", "loss1=dry*cp*(tg-ta)\n", "loss2=z2*12/(lbC) *Cb*Qco\n", "loss3=Cr*Qc/coal\n", "loss4=xmois*(1089+0.46*tg-ta)\n", "loss5=x2*9*(1089+0.46*tg-ta)\n", "loss6=steam*h4/coal\n", "//results\n", "printf('Heat absorbed in the boiler = %.2f Btu per lb of steam generated',Qb)\n", "printf('\n Heat absorbed in the superheater = %.2f Btu/lb of steam',Qs)\n", "printf('\n Heat absorbed in steam generating = %.2f Btu/lb of steam generated',h4)\n", "printf('\n Output of steam generating unit = %d kB',out)\n", "printf('\n Efficiency of steam generating unit = %.1f percent',eff*100)\n", "printf('\n Carbon burned to CO and CO2 = %.2f lb of C per lb of fuel',Cb)\n", "printf('\n Dry products of combustion = %.2f lb per lb of fuel',dry)\n", "printf('\n Loss due to sensible heat in dry gaseous products of combustion = %d Btu/lb of fuel',loss1)\n", "printf('\n Loss due to CO in dry products of combustion = %.1f Btu/lb of fuel',loss2)\n", "printf('\n Loss due to C in refuse = %.1f Btu/lb of fuel',loss3)\n", "printf('\n Loss due to evaporating moisture in fuel = %.1f Btu/lb of fuel',loss4)\n", "printf('\n Loss due to water vapor formed from H = %.1f Btu/lb of fuel',loss5)\n", "printf('\n Energy absorbed in generating steam = %d Btu/lb of fuel',loss6)\n", "disp('The answers are a bit different due to rounding off error in the textbook')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1: Example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "x=0.98\n", "vg=26.80\n", "vf=0.01672\n", "//calculations\n", "vx=x*vg+(1-x)*vf\n", "//results\n", "printf('Specific volume of wet steam = %.6f cu ft per lb',vx)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2: Example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "hf=167.99 //Btu/lb\n", "hg=4.5 //Btu/lb\n", "//calculations\n", "hc=hf+hg\n", "//results\n", "printf('Enthalpy of water = %.1f Btu/lb',hc)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3: Example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "x=0.97\n", "hg=1187.2 //Btu/lb\n", "hf=298.40 //Btu/lb\n", "hfg=888.8 //Btu/lb\n", "//calculations\n", "hx1=x*hg+(1-x)*hf\n", "hx2=hf+x*hfg\n", "hx3=hg-(1-x)*hfg\n", "//results\n", "printf('\n In case 1, enthalpy = %.1f Btu/lb',hx1)\n", "printf('\n In case 2, enthalpy = %.1f Btu/lb',hx2)\n", "printf('\n In case 3, enthalpy = %.1f Btu/lb',hx3)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4: Example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "h1=1172 //Btu/lb\n", "hf1=355.36 //Btu/lb\n", "hfg1=843 //Btu/lb\n", "//calculations\n", "h2=h1\n", "x1= (h2-hf1)/hfg1\n", "//results\n", "printf('Quality of steam = %.1f percent',x1*100)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5: Example_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "P=200 //psia\n", "x=0.95\n", "m=1//lb\n", "//calculations\n", "disp('From mollier chart,')\n", "hx=1156 //Btu/lb\n", "sx=1.495 //Btu/lb F\n", "//results\n", "printf('Enthalpy = %d Btu/lb',hx)\n", "printf('\n entropy = %.3f Btu/lb F',sx)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6: Example_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "P=200 //psia\n", "T=600 //F\n", "m=1 //lb\n", "//calculations\n", "disp('From mollier chart,')\n", "hx=1322 //Btu/lb\n", "sx=1.676 //Btu/lb F\n", "//results\n", "printf('Enthalpy = %d Btu/lb',hx)\n", "printf('\n entropy = %.3f Btu/lb F',sx)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.7: Example_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "P=200 //psia\n", "T=260 //F\n", "//calculations\n", "disp('From mollier chart,')\n", "hx=1174 //Btu/lb\n", "x1=2.8\n", "y1=100-x1\n", "//results\n", "printf('Quality = %.1f percent',y1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.8: Example_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "P=200 //psia\n", "T=500 //F\n", "//calculations\n", "disp('From mollier chart,')\n", "hi=1269 //Btu/lb\n", "hf=1063 //Btu/lb\n", "dh=hi-hf\n", "y1=91\n", "//results\n", "printf('Quality = %.1f percent',y1)\n", "printf('\n Change in enthalpy = %d Btu/lb',dh)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.9: Example_9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Initialization of variables\n", "P=200 //psia\n", "Ts=260 //F\n", "Tf=220 //F\n", "m=10000 //lb\n", "Pc=20 //psia\n", "//calculations\n", "disp('From mollier charts,')\n", "hf=188 //Btu/lb\n", "h2=1172 //Btu/lb\n", "Q=m*(h2-hf)\n", "//results\n", "printf('Heat absorption = %d Btu/hr',Q)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }