{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: Bipolar Junction Transistors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1: DC_beta.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//ex4.1\n", "I_C=3.65*10^-3; //collector current in amperes\n", "I_B=50*10^-6; //base current in amperes\n", "B_DC=I_C/I_B;\n", "I_E=I_B+I_C;\n", "disp(B_DC,'B_DC')\n", "disp(I_E,'emitter current in amperes')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2: Current_Voltage_Analysis.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//ex4.2\n", "V_BE=0.7;\n", "B_DC=150;\n", "V_BB=5;\n", "V_CC=10;\n", "R_B=10*10^3;\n", "R_C=100;\n", "I_B=(V_BB-V_BE)/R_B;\n", "I_C=B_DC*I_B;\n", "I_E=I_C+I_B;\n", "V_CE=V_CC-I_C*R_C;\n", "V_CB=V_CE-V_BE;\n", "disp(I_B,'base current in amperes')\n", "disp(I_C,'collector current in amperes')\n", "disp(I_E,'emitter current in amperes')\n", "disp(V_CE,'collector to emitter voltage in volts')\n", "disp(V_CB,'collector to base voltage in volts')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3: Collector_characteristic_curve.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//ex4.3\n", "disp('cant be shown')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.4: DC_loadline.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//ex4.4\n", "V_CE_sat=0.2;\n", "V_BE=0.7;\n", "V_BB=3;\n", "V_CC=10;\n", "B_DC=50;\n", "R_B=10*10^3;\n", "R_C=1*10^3;\n", "I_C_sat=(V_CC-V_CE_sat)/R_C;\n", "I_B=(V_BB-V_BE)/R_B;\n", "I_C=B_DC*I_B;\n", "if I_C>I_C_sat then\n", " disp('transistor in saturation')\n", "else\n", " disp('transistor not in saturation')\n", "end" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.5: Transistor_rating.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//ex4.5\n", "P_D_max=250*10^-3; //max power rating of transistor in watts\n", "V_CE=6;\n", "I_C=P_D_max/V_CE;\n", "disp(I_C,'collector current that can be handled by the transistor(in amperes)')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6: Maximum_Transistor_Rating.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//ex4.6\n", "P_D_max=800*10^-3;\n", "V_BE=0.7;\n", "V_CE_max=15;\n", "I_C_max=100*10^-3;\n", "V_BB=5;\n", "B_DC=100;\n", "R_B=22*10^3;\n", "R_C=10^3;\n", "I_B=(V_BB-V_BE)/R_B;\n", "I_C=B_DC*I_B;\n", "V_R_C=I_C*R_C; //voltage drop across R_C\n", "V_CC_max=V_CE_max+V_R_C;\n", "P_D=I_C*V_CE_max;\n", "if P_D