{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Oscillators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3_1: example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 199\n", "// prob no 6.3.1\n", "// RC phase shift scillator\n", "// In the given problem small-signal o/p resistance Rc=40kohm\n", "// collector bias resistor, rc=10kohm,f=400 Hz;\n", "// all resistances are in Kohm and freq in Hz\n", "f=400;rc= 10; Rc= 40;\n", "// Minimum value of beta is given by Bomin= 23+(4*Ro/R)+(29*R/Ro)\n", "// For minimum beta Ro/R=2.7, we represent Ro/R=b\n", "b=2.7;\n", "Bomin=23+(4*b)+(29*1/b);\n", "disp(Bomin,'1.The minimum value of beta is');\n", "//Determination of R and C components\n", "//R0 is given by (rc*Rc)/(rc+Rc)\n", "R0=(rc*Rc)/(rc+Rc);\n", "R=2.7* R0;\n", "disp('Kohm',R,+'2.The value of resistor R=');\n", "c=1/(2*%pi*f*R*sqrt(6+(4*b)))*10^9;\n", "disp('pF',c,+'3.The value of capacitor is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3_2: example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 200\n", "// prob no 6.3.2\n", "// RC phase shift oscillator\n", "// all resistors are in Kohm\n", "f=800;R0=18;\n", "// R>>Ro should be chosen to minimize the effect of Ro on frequency. A number of values for R can be tried, and it will be found that R=100Kohm is reasonable.\n", "R=100;\n", "c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;// C in pF\n", "disp('pF',c,+'The value of capacitor is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3_3: example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 201\n", "// prob no 6_3_3\n", "// RC pase shift oscillator\n", "// All resistors are in Kohm\n", "f=1000; Ro=5;\n", "//Choose R>> R0 to minimize the effects of R0 on frequency. Select R=100kohm\n", "R=100;\n", "c=1/(2*%pi*f*R*sqrt(6+(4*R0/R)))*10^9;\n", "disp('pF',c,+'The value of capacitor is ');\n", "// The required open -circuit voltage gain is \n", "Ao= 29+23*(Ro/R)+4*(Ro/R)^2;\n", "disp(Ao,'1.The required open -circuit voltage gain is');\n", "gm=Ao/Ro;\n", "disp('mS',gm,+'2.The value of gm is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.4_1: example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 205\n", "// prob no 6_4_1\n", "// colpitt's oscillator\n", "L=400*10^-6;// in H\n", "c1= 100;// in pF\n", "c2= 300;// in pF\n", "Q=200;\n", "Ro= 5*10^3;\n", "Bo=100;//beta value\n", "// The tuning capacitance is\n", "Cs=(c1*c2/(c1+c2));\n", "disp('pF',Cs,+'1.The value of capacitor is ');\n", "// the frequency of oscillation is obtained as\n", "f=1/(2*%pi*sqrt(L*Cs*10^-12));\n", "disp('Hz',f,'2.The frequency of oscillation is');\n", "// The dynamic impedence of the tuned circuit \n", "wo= 2*%pi *f;\n", "Rd=Q/(wo*Cs*10^-12);\n", "disp('ohm',Rd,+'3.The dynamic impedence of the tuned circuit');\n", "// The coil series resistance is \n", "r=wo*L/Q;\n", "disp('ohm',r,+'4.The coil series resistance is ');\n", "//The capacitor raio c= c1/c2=1/3, and therefore 1-c2/B0*c1 = 1 .\n", "// The starting value of gm is therefore given by\n", "c= c1/c2;\n", "gm=(1/Ro)*c +(c+3+2)*(1/Rd);\n", "disp('sec',gm,+'5.The value of gm is');\n", "// Assuming the input resistance is that of the transistor alone,\n", "R1=Bo/gm;\n", "disp('ohm',R1,+'6.The input resistance is');\n", "//The actual starting frequency is obtained from wo^2=(1/LCs)+(1/R1R2C1C2)\n", "wo2=1/((L*Cs*10^-12)+(1/R1*Ro*c1*c2*10^-12*10^-12));\n", "wo=sqrt(wo2);\n", "// Hence the frequency is \n", "f=wo/(2*%pi);\n", "disp('Hz',f,'7.The frequency of oscillation is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6_1: example_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 211\n", "// prob no 6.6.1\n", "//In given problem zero bias capacitance co is 20pF\n", "Co=20;// in pF\n", "Vd=-7;// reverse bias voltage in volt\n", "//constant pottential of junction is 0.5\n", "a=0.5;// for abrupt junction\n", "Cd=Co/(1-(Vd/0.5))^a;\n", "disp('pF',Cd,+'The value of capacitor is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6_2: example_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 212\n", "// prob no 6.6.2\n", "//Voltage controlled Clapp oscillator\n", "// Capacitor is in pF and inductor in uH\n", "C1=300; C2=300; Cc=20; L=100;\n", "// A) With zero applied bias,the total tuning capacitor is\n", "Vd1=0;a=0.5;Co=20;\n", "Cd1=Co/(1-(Vd1/0.5))^a;\n", "Cs1=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd1));\n", "disp('pF',Cs1, +'1.The total tuning capacitor is');\n", "// The frequency of oscillation is\n", "f=1/(2*%pi*sqrt(L*10^-6*Cs1*10^-12));\n", "disp('Hz',f,'2.The frequency of oscillation is');\n", "// B) With a reverse bias of -7 v, the tuning capacitance becomes\n", "Vd2=-7;\n", "Cd2=Co/(1-(Vd2/0.5))^a;\n", "Cs2=1/((1/C1)+(1/C2)+(1/Cc)+(1/Cd2));\n", "disp('pF',Cs2, +'3.The total tuning capacitor is');\n", "// The frequency of oscillation is\n", "f=1/(2*%pi*sqrt(L*10^-6*Cs2*10^-12));\n", "disp('Hz',f,'4.The frequency of oscillation is');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }