{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: Noise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.11_1: example_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 135\n", "// prob no 4_11_1\n", "//An amplifier is given\n", "Rn=300;//Equivalent noise resistance\n", "Ieq=5*10^-6;//Equivalent noise current is 5 uA\n", "Rs=150;//Amplifier fed from 150 ohm,10 uV rms sinusoidal source\n", "Vs=10*10^-6;\n", "Bn=10*10^6;//Noise BW is 10 MHz\n", "//Assume the following\n", "kT=4*10^-21;//k is Boltzman constant in J/K & T is room temp\n", "q=1.6*10^-19;//Charge on electron in coulombs\n", "//Determination of shot noise current\n", "Ina=(2*q*Ieq*Bn)^(1/2);\n", "disp('nA',Ina*(10^9)','The value of shot noise current Ina is ');\n", "//Noise voltage developed by this across source resistance is \n", "V=Ina*Rs;\n", "disp('uV',Vs*(10^6)','The value of noise voltage across Rs is ');\n", "//Noise voltage developed across Rn resistance is\n", "Vna=(4*Rn*kT*Bn)^(1/2);\n", "disp('uV',Vna*(10^6)','The value of noise voltage across Rn is ');\n", "//Determination of thermal noise voltage from source \n", "Vns=(4*Rs*kT*Bn)^(1/2);\n", "disp('uV',Vns*(10^6)','The value of thermal noise voltage at Rs is');\n", "//Determination of total noise voltage at input\n", "Vn=(((V)^2)+((Vna)^2)+((Vns)^2))^(1/2)\n", "disp('uV',Vn*(10^6)','The value of total noise voltage Vn is ');\n", "//Determination of signal to noise ratio in dB\n", "SNR=20*(log10(Vs/Vn));\n", "disp('dB',SNR,'The value of signal to noise ratio is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.12_1: example_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 136\n", "// prob no 4_12_1\n", "//As shown in fig 4.12.1\n", "//Three identical links are given with for 1 link is SNR=60 dB\n", "SNR1=60;\n", "l=3;\n", "//Determination of output signal to noise ratio\n", "SNR=(SNR1)-10*log10(l);\n", "disp('dB',SNR,'The value of output signal to noise ratio is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.12_2: example_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 137\n", "// prob no 4_12_2\n", "//SNR for three links is given in which Ist two have SNR 60 db & IInd 40 dB\n", "SNRdB(1)=60;//SNR is 60 dB for Ist link\n", "SNRdB(2)=60;//SNR is 60 dB for IInd link\n", "SNRdB(3)=40;//SNR is 40 dB for IIIrd link\n", "//Determination of power in watt\n", "for i=1:3\n", "snr(i)=10^(-SNRdB(i)/10);\n", "end;\n", "//Determination of overall SNR\n", "for i=1:3\n", "SNR=snr(i);\n", "end;\n", "//Determination of total SNR in dB \n", "SNRdB=10*(-log10(SNR));\n", "disp('dB',SNRdB,'The value of output signal to noise ratio is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.13_1: example_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 139\n", "// prob no 4_13_1\n", "//Noise fig. of an amplifier is 7 dB with input SNR=35 dB\n", "SNRin=35;//SNR at i/p of amplifier\n", "F=7;//Noise figure of an amplifier\n", "//Determination of output SNR\n", "SNRout=SNRin-F;\n", "disp('dB',SNRout,'The value of output signal to noise ratio is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.14_1: example_9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 140\n", "// prob no 4_14_1\n", "//Noise fig. of an amplifier is 13 dB with BW=1MHz\n", "f=13;//Noise figure of an amplifier\n", "Bn=1*10^6;\n", "kT=4*10^-21;//k is Boltzman constant in J/K & T is room temp\n", "F=10^(f/10);\n", "//Determination of equivalent amplifier input noise\n", "Pna=(F-1)*kT*Bn;\n", "disp('pW',Pna*10^12,'The value of input noise is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.15_1: example_10.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 141\n", "// prob no 4_15_1\n", "//mixer with noise fig. 20dB preceded by amplifier with noise fig. 9dB is given\n", "f1=9;//Noise fig for amplifier\n", "f2=20;//Noise fig for mixer\n", "g=15;//power gain\n", "//Converting dB in power ratio\n", "F1=10^(f1/10);\n", "F2=10^(f2/10);\n", "G=10^(g/10);\n", "//Determination of overall noise fig. reffered at i/p\n", "F=F1+(F2-1)/G;\n", "//converting in dB\n", "FdB=10*log10(F);\n", "disp('dB',FdB,'The overall noise fig is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.17_1: example_11.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 143\n", "// prob no 4_17_1\n", "//An attenuator is given with insertion loss of 6 dB\n", "//Noise fig is equivalent to insertion loss\n", "F=6;//Noise fig.=6 dB\n", "//Determination of noise factor\n", "Fn=10^(6/10);\n", "disp(Fn,'The value of noise factor is '); " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.18_1: example_12.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 144\n", "// prob no 4_18_1\n", "//A receiver with noise fig. 12dB fed by low noise amplr with gain 50 dB with noise temp of 90 k\n", "f=12;\n", "Tm=290;//Room temp value \n", "T=90;\n", "g=50;\n", "//calculating power ratio\n", "F=10^(f/10);\n", "G=10^(g/10);\n", "//Determination of equivalent noise at room temp\n", "Tem=(F-1)*Tm;\n", "disp('K',Tem,'The value of equivalent noise at room temp is');\n", "//Determination of equivalent noise at 90 k temp\n", "Te=T+(Tem/G);\n", "disp('K',Te,'The value of equivalent noise at noise temp=90 is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.19_1: example_13.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 146\n", "// prob no 4_19_1\n", "//An avalanche diode source is given with excess noise ratio is 14 dB\n", "enr=14;\n", "To=290;//Room temp in K\n", "y=9;//Y-factor is 9 dB\n", "//converting dB in power ratio\n", "ENR=10^(enr/10);\n", "Y=10^(y/10);\n", "//From def of ENR the hot temp is\n", "Th=To*(ENR+1);\n", "disp('K',Th,'The value of hot temp Th is '); \n", "//Determination of equivalent noise temp\n", "Te=(Th-(Y*To))/(Y-1);\n", "disp('K',Te,'The value of equivalent noise temp Te is '); " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2_1: example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 120\n", "// prob no 4_2_1\n", "//Resistor at room temp T=290 K with BW=1MHz and R=50 ohm\n", "T=290\n", "BW=1*10^6// Noise bandwidth in hertz\n", "k=1.38*10^-23 //Boltzman constant in J/K\n", "R=50\n", "//Determination of thermal noise power Pn\n", "Pn=k*T*BW;\n", "disp('W',Pn,+'The value of thernal noise power is');\n", "//Determination of RMS noise voltage\n", "En=(4*R*k*T*BW)^(1/2);\n", "disp('uV',En*(10^6),+'The value of RMS noise voltage is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2_2: example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 122\n", "// prob no 4_2_2\n", "//Two resistor at room temp are given with BW=100KHz\n", "R1=20000\n", "R2=50000\n", "k=1.38*10^-23 //Boltzman constant in J/K\n", "T=290\n", "BW=100*10^3\n", "//Determination of thermal noise voltage for 20Kohm resistor\n", "En1=(4*R1*k*T*BW)^(1/2);\n", "disp('uV',En1*(10^6),+'a)i)The value of RMS noise voltage is');\n", "//Determination of thermal noise voltage for 50 kohm resistor\n", "En2=En1*(R2/R1)^(1/2);\n", "disp('uV',En2*(10^6),+'a)ii)The value of RMS noise voltage is');\n", "//Determination of thermal noise voltage for 20K & 50k resistor in series \n", "Rser=R1+R2// Series combination of R1 & R2\n", "En3=En1*(Rser/R1)^(1/2);\n", "disp('uV',En3*(10^6),+'b)The value of RMS noise voltage is');\n", "//Determination of thermal noise voltage for 20K & 50k resistor in parellel\n", "Rpar=(R1*R2)/(R1+R2)// parallel combination of R1 & R2\n", "En4=En1*(Rpar/R1)^(1/2);\n", "disp('uV',En4*(10^6),+'c)The value of RMS noise voltage is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2_3: example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 128\n", "// prob no 4_2_3\n", "//Parallel tuned ckt tuned at resonant freq f=120 MHz\n", "f=120*10^6;\n", "c=25*10^-12;//capacitance of 12 pF\n", "Q=30;//Q-factor of the ckt is 30\n", "BW=10*10^3;//cahnnel BW of the receiver is 10 KHz\n", "k=1.38*10^-23 //Boltzman constant in J/K\n", "T=290;//Room temp\n", "//Determination of effective noise voltage Rd apearing at i/p at room temp\n", " Rd=Q/(2*%pi*f*c);\n", " disp('kohm',Rd/1000,'The value of Rd is ');\n", " Vn=(4*Rd*k*T*BW)^(1/2);\n", "disp('uV',Vn*(10^6),'The value of effective noise voltage is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3_1: example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 131\n", "// prob no 4_3_1\n", "//Direct current of 1 mA flowing across semiconductor junctn\n", "Idc=10^-3;\n", "Bn=10^6;//Effective noise BW=1 MHz\n", "q=1.6*10^-19;//Charge on electron in coulombs\n", "//Determination of noise component current In in DC current of Idc=1 mA\n", "In=(2*Idc*q*Bn)^(1/2);\n", "disp('nA',In*(10^9)','The value of noise current In is ')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }