{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15: RADIO WAVE PROPOGATION" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2_1: example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 538\n", "//prob no. 15.2.1\n", "// satellite communication system is given \n", "ht=36000;//height of satellite in km\n", "f=4000;//freq used in MHz\n", "Gt=15;//transmitting antenna gain\n", "Gr=45;//receiving antenna gain\n", "// A) Determination of free-space transmission loss\n", "L=32.5+20*log10(ht)+20*log10(f);\n", "disp('dB',L,'The free-space transmission loss is');\n", "// B) Determination of received power Pr\n", "Pt=200;//transmitted power in watt\n", "Pr_Pt=Gt+Gr-L;//power ration in dB\n", "Pr_Pt_watt=10^(Pr_Pt/10);//power ratio in watts\n", "//Therefore\n", "Pr=Pt*Pr_Pt_watt;\n", "disp('watts',Pr,'The received power');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2_2: example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 539\n", "//prob no. 15.2.2\n", "// In the given problemhalf dipole antenna is given\n", "Pr=10;//radiated power in watt\n", "f=150;//freq used in MHz\n", "d2=50;//distance of dipole in km\n", "//we know for the half dipole the maximum gain is 1.64:1,and the effectie length is wl/pi. Therefore open-ckt voltage induced is given as\n", "Vs=sqrt(30*Pr*1.64)/(d2*10^3)*2/%pi;\n", "disp('uV',Vs*10^6,'The open-ckt voltage induced is ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3_1: example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 545\n", "//prob no. 15.3.1\n", "// VHF mobile radio system is given \n", "Pt=100;//transmitted power\n", "f=150;//freq used in MHz\n", "d1=20;//height of transmitting antenna in m\n", "Gt=1.64;//transmitting antenna gain\n", "ht=2;//height of receiving antenna in m\n", "d2=40;// distance in km\n", "wl=c/(f*10^6);\n", "E0=sqrt(30*Pt*Gt)\n", "// Field strength at a receiving antenna is\n", "ER=(E0*4*%pi*d1*ht)/(wl*(d2*10^3)^2);\n", "disp('uV/m',ER*10^6,'Field strength at a receiving antenna is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3_2: example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 548\n", "//prob no. 15.3.2\n", "ht1=100;ht2=60;//antenna heights in ft\n", "dmax_miles=sqrt(2*ht1)+sqrt(2*ht2);\n", "disp('miles',dmax_miles,'The maximum range is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.4_1: example_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 560\n", "//prob no. 15.4.1\n", "ht=200;//virtual height in km\n", "a=6370;//in km\n", "B_degree=20;\n", "B_rad=20*%pi/180;//angle of elevation in degree\n", "// The flat-earth approximation gives \n", "d=2*ht/tand(B_degree);\n", "disp('km',d,'d=');\n", "// By using radian measures for all angles\n", "d=2*a*(((%pi/2)-B_rad)-(asin(a*cosd(B_degree)/(a+ht))));\n", "disp('km',d,'d=');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.7_1: example_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 574\n", "//prob no. 15.7.1\n", "// In this problem data regarding the sea water is given\n", "conductivity = 4;//measured in S/m\n", "rel_permittivity =80;\n", "u=4*%pi*10^-7;\n", "f1=100;//measured in Hz\n", "f2=10^6;//measured in Hz\n", "// A) first it is necessary to evaluate the ratio of conductivity/w*rel_permittivity\n", "w1=2*%pi*f1;\n", "r=conductivity/w1*rel_permittivity;\n", "//after the calculation this ratio is much greater than unity. Therefore we have to use following eq to calculate the attenuation coeff as\n", "a=sqrt(w1*conductivity*u/2);\n", "disp('N/m',a,'The attenuation coeff is');\n", "// By using the conversion factor 1N=8.686 dB\n", "a_dB=a*8.686;\n", "disp('dB/m',a_dB,'The attenuation coeff in dB/m is');\n", "// B)\n", "w2=2*%pi*f2;\n", "r=conductivity/w2*rel_permittivity;\n", "//after the calculation this ratio is much greater than unity. Therefore we have to use following eq to calculate the attenuation coeff as\n", "a=sqrt(w2*conductivity*u/2);\n", "disp('N/m',a,'The attenuation coeff is');\n", "// By using the conversion factor 1N=8.686 dB\n", "a_dB=a*8.686;\n", "disp('dB/m',a_dB,'The attenuation coeff in dB/m is');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }