{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Passive Circuits" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.10_1: example_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 34\n", "// prob no 1_10_1\n", "//From the ckt of fig. 1.10.1(a)\n", "C1=70*10^-12\n", "C2=150*10^-12\n", "Rl=200\n", "Q=150\n", "f=27*10^6\n", "r=40000\n", "//Determination of common resonant freq\n", "wo=2*3.14*f;\n", "disp('Mrad/sec',wo/(10^6),+'The value of common resonant freq is');\n", "//Determination of Gl\n", "Gl=1/Rl;\n", "disp('mSec',Gl*(10^3),+'The value of Gl is');\n", "//Checking the approxiamtion in denominator\n", "ap=((wo*(C1+C2))/(Gl))^2\n", "alpha=(C1+C2)/C1;\n", "disp(alpha,'The value of alpha is ')\n", "//Determination of effective load\n", "Reff=((alpha)^2)*Rl;\n", "disp('kohm',Reff/(10^3),+'The value of effective load is');\n", "//If effective load is much less than internal resistance hence tuning capacitance then\n", "Cs=C1*C2/(C1+C2);\n", "disp('pF',Cs*(10^12),+'The value of tuning capacitance is'); \n", "//Determination of Rd\n", "Rd=Q/(wo*Cs);\n", "disp('kohm',Rd/(10^3),+'The value of Rd is'); \n", "//If Rd is much greater than Reff then -3dB bandwidth is given by\n", "B=1/(2*3.14*C2*alpha*Rl);\n", "disp('MHz',B/(10^6),+'The value of -3dB BW is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2_2: example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 5\n", "// prob no 1_2_2\n", "//T-type attenuator provide 6-dB insertion loss\n", "//All resistance are in ohm\n", "Ro=50\n", "ILdB=6\n", "IL=10^-(ILdB/20)\n", "//Determination of R \n", "R=Ro*(1-IL)/(1+IL)\n", "disp('ohm',R,+'The value of resistance R is')\n", "//Determination of R3\n", "R3=(2*Ro*IL)/(1-(0.5)^2)\n", "disp('ohm',R3,+'The value of resistance R3 is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2_3: example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 7\n", "// prob no 1_2_3\n", "//pi-attenuator with 6 dB insertion loss\n", "//output resistance is Ro=50 ohm\n", "//All resistance are in ohm\n", "Ro=50\n", "ILdB=6\n", "IL=10^-(ILdB/20)\n", "//Determination of RA and RB\n", "RA=Ro*(1+IL)/(1-IL);\n", "disp('ohm',RA,+'The value of resistance RA and RB is')\n", "//Determination of RC\n", "RC=Ro*(1-(IL)^2)/(2*IL);\n", "disp('ohm',RC,+'The value of resistance RC is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2_4: example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 9\n", "// prob no 1_2_4\n", "//As given in fig. 1.2.4 L-attenuator with source resistance Rs=75 ohm and load resistance Rl=50 ohm\n", "Rs=75; Rl=50;\n", "//Determination of R1\n", "R1=(Rs*(Rs-Rl))^(1/2);\n", "disp('ohm',R1,+'The value of resistance R1 is');\n", "//Determination of R3\n", "R3=((Rs^2)-(R1^2))/R1;\n", "disp('ohm',R3,+'The value of resistance R3 is');\n", "//Determination of insertion loss\n", "IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)^2)\n", "ILdB=-20*log10(IL);//convertion of power in decibels\n", "disp('dB',ILdB,+'The value of insertion loss is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2_5: example_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 10\n", "// prob no 1_2_5\n", "//As given in fig. 1.2.4 L-attenuator with source resistance Rs=10 ohm and load resistance Rl=50 ohm\n", "Rs=10; Rl=50;\n", "//Determination of R2\n", "R2=(Rl*(Rl-Rs))^(1/2);\n", "disp('ohm',R2,+'The value of resistance R2 is');\n", "//Determination of R3\n", "R3=((Rl^2)-(R2^2))/R2;\n", "disp('ohm',R3,+'The value of resistance R3 is');\n", "//Determination of insertion loss\n", "IL=(R3*(Rs+Rl))/((Rs+R3)*(R3+R2+Rl)-(R3)^2)\n", "ILdB=-20*log10(IL);//convertion of power in decibels\n", "disp('dB',ILdB,+'The value of insertion loss is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.5_1: example_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 21\n", "// prob no 1_5_1\n", "//Series tuned resonant ckt is given which is tuned at 25 MHz with \n", "//series resistance 5 ohm self capacitance 7 pF and inductance 1 uH \n", "C=7*10^-12;R=5;L=10^-6;f=25*10^6;\n", "//Determination of self resonant freq of coil denoted as Fsr\n", "Fsr=1/(2*3.14*(L*C)^0.5);\n", "disp('MHz',Fsr/(10^6),+'The value of self resonant freq is');\n", "//Determination of Q-factor of coil,excluding self-capacitive effects\n", "Q=(2*3.14*f*L)/R;\n", "disp(Q,'The value of Q-factor is');\n", "//Determination of effective inductance\n", "Leff=L/(1-(f/Fsr)^2);\n", "disp('uH',Leff*(10^6),+'The value of effective inductance is');\n", "//Determination of effective Q-factor\n", "Qeff=Q*(1-(f/Fsr)^2);\n", "disp(Qeff,'The value of effective Q-factor is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.8_1: example_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 26\n", "// prob no 1_8_1\n", "//High frequency transformer with identical primary and secondary circuits\n", "Lp=150*10^-6;\n", "Ls=150*10^-6;\n", "Cp=470*10^-12;\n", "Cs=470*10^-12;\n", "//Lp=Ls=150 uH,Cp=Cs=470 pF\n", "Q=85//Q-factor for each ckt is 85\n", "c=0.01//Coeff of coupling is 0.01\n", "Rl=5000//Load resistance Rl=5000 ohm\n", "r=75000//Constant current source with internal resistance r=75 kohm\n", "//Determination of common resonant frequency\n", "wo=1/((Lp*Cp)^(1/2));\n", "//disp('Mrad/sec',wo/(10^6),+'The value of common resonant freq is');\n", "p=3.77*10^6;\n", "Z2=Rl/(1+(p*%i*Cs*Rl));\n", "Z1=r/(1+(p*%i*Cp*r));\n", "// At resonance Zs=Zp=Z\n", "Z=wo*Ls*(1/Q +%i);\n", "Zm=%i*p*c*Lp;\n", "// Determination of denominator\n", "Dr=((Z+Z1)*(Z+Z2))-(Zm^2)\n", "// Hence transfer impedance is given as\n", "Zr= (Z1*Z2*Zm)/Dr;\n", "disp('ohm',Zr,'The transfer impedance is');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }