{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15: Radio Wave Propogation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.11: example_10.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "// page no 545\n", "// prob no 15.11\n", "// An automobile travels at 60km/hr\n", "v=60*10^3/(60*60);//conversion of car's speedto m/s\n", "c=3*10^8;//speed of light\n", "//part a) calculation of time between fades if car uses a cell phone at 800*10^6Hz\n", "f=800*10^6;\n", "T=c/(2*f*v);\n", "disp('sec',T,'The fading period is');\n", "//part b) calculation of time between fades if car uses a PCS phone at 1900*10^6Hz\n", "f=1900*10^6;\n", "T=c/(2*f*v);\n", "disp('sec',T,'The fading period is');\n", "// Note that the rapidity of the fading increases with both the frequency of the transmissions and the speed of the vehicle" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.12: example_11.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 550\n", "// problem no 15.12\n", "A=1000;//metropolitian area expressed in sq. km\n", "r=2;//radius of cell in km\n", "// Number of cell sites given as\n", "N=A/(3.464*r^2);\n", "disp(N,'Number of cell sites are');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.1: example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 517\n", "//prob no. 15.1\n", "//Dielectric constt=2.3\n", "er=2.3;\n", "//Determination of characteristic impedance\n", "Z=377/sqrt(er);\n", "disp('ohm',Z,'The charasteristic impedance of polyethylene is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.2: example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 518\n", "//prob no. 15.2\n", "//Dielelectric strength of air=3MV/m\n", "e=3*10^6;//electric field strength\n", "Z=377;//impedance of air\n", "Pd=(e^2)/Z;//Determination of power density\n", "disp('GW/m2',Pd/10^9,'The max power density is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.3: example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 520\n", "//prob no. 15.3\n", "//An isotropic radiator with power 100W & dist given is 10km\n", "Pt=100;r=10*10^3;\n", "//Determination of power density at r=10km\n", "Pd=Pt/(4*%pi*(r^2));\n", "disp('nW/m2',Pd*10^9,'Power density at a point 10km');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.4: example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 521\n", "//prob no. 15.4\n", "//An isotropic radiator radiates power=100W at point 10km\n", "Pt=100;r=10*10^3;\n", "//Determination of electric field strength\n", "e=sqrt(30*Pt)/r;\n", "disp('mW/m',e*1000,'The electric field strength is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.5: example_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 525\n", "//prob no. 15.5\n", "//A transmitter with power o/p=150W at fc=325MHz.antenna gain=12dBi receiver antenna gain=5dBi at 10km away\n", "//considering no loss in the system\n", "d=10;Gt_dBi=12;Gr_dBi=5;fc=325;Pt=150;\n", "//Determination of power delivered\n", "Lfs=32.44+(20*log10(d))+(20*log10(fc))-(Gt_dBi)-(Gr_dBi);\n", "Pr=Pt/(10^(Lfs/10));\n", "disp('nW',Pr*10^9,'The power delivered to receiver is'); " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.6: example_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 525\n", "//prob no. 15.6\n", "//A transmitter with o/p power=10W at fc=250MHz,connected to Tx 10m line with loss=3dB/100m t0 antenna with gain=6dBi.Rx antenna 20km away with gain=4dBi \n", "//Refer fig.15.6,assuming free space propagation\n", "d=20;fc=250;Gt_dBi=6;Gr_dBi=4;loss=3/100;Zl=75;Zo=50;L=10;Pt=10;\n", "Lfs=32.44+(20*log10(d))+(20*log10(fc))-Gt_dBi-Gr_dBi;//path loss\n", "disp(Lfs);\n", "L_tx=L*loss;//Determination of loss\n", "ref_coe=(Zl-Zo)/(Zl+Zo);//Reflection coefficient\n", "L_rx=1-(ref_coe^2);//Proportion of incident power that reaches load\n", "L_rx_dB=-10*log10(L_rx);//Converting that proportion in dB\n", "//Determination of total loss Lt\n", "Lt=(Lfs)+(L_tx)+(L_rx_dB);\n", "//Determination of power delivered to receiver\n", "Pt_Pr=10^(Lt/10);//Power ratio\n", "Pr=Pt/Pt_Pr;\n", "disp('W',Pr,'The power delivered to receiver is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.7: example_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 530\n", "//prob no. 15.7\n", "//A radio wave moves from air(er=1) to glass(er=7.8).angle of incidence=30 deg\n", "theta_i=30;er1=1;er2=7.8;\n", "//determination of angle of refraction\n", "theta_r=asind((sind(theta_i))/(sqrt(er2/er1)));\n", "disp('degree',theta_r,'The angle of refraction is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.8: example_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 537\n", "//prob no. 15.8\n", "//A Tx statn with fc=11.6MHz & angle of incidence=70 degree\n", "theta_i=70;fc=11.6;//in MHz\n", "//determination of max usable freq(MUF)\n", "MUF=fc/(cosd(theta_i));\n", "disp('MHz',MUF,'The max usable freq MUF is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 15.9: example_9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "//page no 539\n", "//prob no. 15.9\n", "//A taxi compony using central dispatcher with antenna height=15m & taxi antenna height=1.5m\n", "ht=15;hr=1.5;\n", "//a)Determination of max commn dist betn dispatcher and taxi\n", "d1=sqrt(17*ht)+sqrt(17*hr);\n", "disp('km',d,'a)The max commn dist betn dispatcher & taxi');\n", "//b)Determination of max ommn dist betn 2 taxis\n", "d2=sqrt(17*hr)+sqrt(17*hr);//ht=hr=height of antenna of taxi cab\n", "disp('km',d2,'The max commn dist betn two taxi is');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }