{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 16: Polyphase systems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.10: Calculate_the_current_in_each_line_and_value_of_each_resistance.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.10\n", "clc;\n", "P_consumed=3000/3;\n", "E_per_phase=440/(3^0.5);\n", "IL=P_consumed/E_per_phase;\n", "printf('\nCurrent in each line=%.2f A',IL)\n", "R=E_per_phase/IL;\n", "printf('\nResistance of resistor=%.2f ohm',R)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.11: Calculate_circuit_constants_of_load_per_phase.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.11\n", "clc;\n", "VL=1100;\n", "IL=100;\n", "pf=150*1000/(3^0.5*VL*IL);\n", "E_per_phase=VL/3^0.5;\n", "Zph=E_per_phase/100;\n", "Rph=pf*Zph;\n", "Xc=(Zph^2-Rph^2)^0.5;\n", "C=10^6/(2*%pi*50*Xc);\n", "disp('Circuit Constants are')\n", "printf('\nR=%.2f ohm',Rph)\n", "printf('\nC=%.2f uF',C)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.12: Calculate_the_readings_of_watt_meters.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.12\n", "clc;\n", "//P_input=W1+W2=15000........(i)\n", "pf=0.4\n", "phi=acosd(0.4);\n", "a=tand(phi);\n", "//tand(phi)=(3^0.5)*(W1-W2)/(W1+W2)\n", "//on solving W1-W2=3464.2 ..............(ii)\n", "//From (i) and (ii) we can calculate\n", "W1=9.232;\n", "W2=5.768;\n", "printf('\nW1=%.2f kW',W1)\n", "printf('\nW2=%.2fkW ',W2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.13: Calculate_the_value_of_power_and_power_factor.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.13\n", "clc;\n", "W1=10;\n", "W2=-1.2;\n", "P_absorbed=W1+W2;\n", "printf('\nPower=%.2f kW',P_absorbed)\n", "phi=atand((3^0.5)*(W1-W2)/(W1+W2));\n", "pf=cosd(phi);\n", "printf('\nPower Factor=%.2f ',pf)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.14: Calculate_the_readings_of_watt_meters.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.14\n", "clc;\n", "P_input=10*735.5/0.82;\n", "//P_input=W1+W2=8974........(i)\n", "pf=0.4\n", "phi=acosd(0.83);\n", "a=tand(phi);\n", "//tand(phi)=(3^0.5)*(W1-W2)/(W1+W2)\n", "//on solving W1-W2=3482 ..............(ii)\n", "//From (i) and (ii) we can calculate\n", "W1=6.228;\n", "W2=2.746;\n", "printf('\nW1=%.2f kW',W1)\n", "printf('\nW2=%.2fkW ',W2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.1: Calculate_Line_and_phase_current.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.1\n", "clc;\n", "disp('For star connected load')\n", "Il=50000/((3^0.5)*440*0.85);\n", "printf('\nLine current=%.2f A',I1)\n", "Iph=Il;\n", "printf('\nPhase current=%.2f A',Iph)\n", "disp('For Delta connected load')\n", "Il=50000/((3^0.5)*440*0.85);\n", "printf('\nLine current=%.2f A',I1)\n", "Iph=Il/(3^0.5);\n", "printf('\nPhase current=%.2f A',Iph)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.2: 2Calculate_line_current_and_total_power.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.2\n", "clc;\n", "disp('For star connection')\n", "Zph=(12^2+5^2)^0.5;\n", "Eph=440/(3^0.5);\n", "Iph=Eph/Zph;\n", "Il=Iph;\n", "printf('\nLine current=%.2f A',I1)\n", "P_total=(3^0.5)*440*Il*12/(Zph*1000);\n", "printf('\nTotal Power=%.2f kW',P_total)\n", "\n", "disp('For Delta connection')\n", "Zph=(12^2+5^2)^0.5;\n", "Eph=440;\n", "Iph=Eph/Zph;\n", "Il=Iph*(3^0.5);\n", "printf('\nLine current=%.2f A',I1)\n", "P_total=(3^0.5)*440*Il*12/(Zph*1000);\n", "printf('\nTotal Power=%.2f kW',P_total)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.3: Calculate_the_resistance_and_inductive_reactance_of_the_load.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.3\n", "clc;\n", "pf=(1.8*1000)/(1100*(3^0.5));\n", "Z=1100/100;\n", "R=Z*pf;\n", "printf('\nResistance of the load=%.2f ohm',R)\n", "Xl=(121-108)^0.5;\n", "L=Xl/314;\n", "printf('\nInductive reactance of the load=%.2f H',L)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.4: Calculate_phase_voltage_and_total_power.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.4\n", "clc;\n", "Eph=400/(3^0.5);\n", "printf('\nPhase voltage=%.2f V',Eph)\n", "P_total=(3^0.5)*400*30*cosd(30)/1000;\n", "printf('\nTotal power=%.2f kW',P_total)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.5: Calculate_current_in_each_generator_and_motor_phase.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.5\n", "clc;\n", "Out_motor=80*735.5;\n", "Input_motor=Out_motor/0.8;\n", "I_alternator_phase=120.64;\n", "I_motor_phase= I_alternator_phase/(3^0.5);\n", "printf('\nCurrent in each motor phase=%.2f A',I_motor_phase)\n", "printf('\nCurrent in each generator phase=%.2f A',I_alternator_phase)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.6: Calculate_the_circuit_parameters.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.6\n", "clc;\n", "El=400;\n", "Eph=El;\n", "Impedance_per_phase= (10^2+15^2)^0.5;\n", "Iph= 400/Impedance_per_phase;\n", "printf('\nPhase current=%.2f A',Iph)\n", "Il=Iph*3^0.5;\n", "printf('\nLine current=%.2f A',I1)\n", "pf=10/Impedance_per_phase;\n", "printf('\nPower factor=%.2f ',pf)\n", "P_total=(3^0.5)*El*Il*pf/1000;\n", "printf('\nTotal Power=%.2f kW',P_total)\n", "VAR=(3^0.5)*El*Il*15/(Impedance_per_phase*1000);\n", "printf('\nReactive volt ampers=%.2f KVAR',VAR)\n", "VA=(3^0.5)*El*Il/1000;\n", "printf('\nTotal Volt ampers=%.2f kVA',VA)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.7: Calculate_the_reduction_in_power.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.7\n", "clc;\n", "disp('Star connections')\n", "R=20;\n", "Iph=440/(3^0.5*R);\n", "P_total=3*Iph^2*R;\n", "disp('when one of the resistor get disconnected')\n", "Iph=440/(2*20);\n", "P_total_new=2*Iph^2*R;\n", "P_reduction=(P_total-P_total_new)*100/P_total;\n", "printf('\nReduction in Power=%.2f percent',P_reduction)\n", "disp('Delta connections')\n", "R=20;\n", "Iph=440/(R);\n", "P_total=3*Iph^2*R;\n", "disp('when one of the resistor get disconnected')\n", "Iph=440/(20);\n", "P_total_new=2*Iph^2*R;\n", "P_reduction=(P_total-P_total_new)*100/P_total;\n", "printf('\nReduction in Power=%.2f percent',P_reduction)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.8: Calculate_the_circuit_parameters.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.8\n", "clc;\n", "R=3;\n", "XL=4;\n", "Z=(R^2+XL^2)^0.5;\n", "Iph1=440/(3^0.5*Z);\n", "IL1=Iph1;\n", "printf('\nLine current=%.1f A',IL1)\n", "P=3*Iph1^2*R;\n", "printf('\nPower=%.0f W',P)\n", "pf1=R/Z;\n", "printf('\npower factor=%.2f (lag)',pf1)\n", "IL2=IL1*(4/5);\n", "Iph2=IL2/3^0.5;\n", "XL2=440/Iph2;\n", "C2=1*10^6/(2*50*28.755);\n", "printf('\nCapacitance=%.1f uF',C2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 16.9: Calculate_the_circuit_parameters.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//16.9\n", "clc;\n", "IL=11000;\n", "Eph=IL/3^0.5;\n", "printf('\nLine to neutral voltage=%.2f V',Eph)\n", "E_Each_phase=Eph;\n", "printf('\nVoltage induced in Each phase winding=%.2f V',E_Each_phase)\n", "T=(242/360)*(1/50)*1000;\n", "printf('\nTime interval=%.2f ms',T)\n", "IL_peak=(2^0.5)*IL;\n", "printf('\nPeak line voltage=%.2f V',IL_peak)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }