{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Transformers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.10: Calculating_primary_current_and_primary_power_factor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating primary current and primary power factor\n", "//Chapter 3\n", "//Example 3.10\n", "//page 211\n", "clear;\n", "clc; \n", "disp('Example 3.10')\n", "V1=6600; //primary voltage in volts\n", "V2=240; //secondary voltage in volts\n", "kW1=10; //power\n", "phi1=acosd(0.8);\n", "I2=50; //current in amperes\n", "kW3=5; //power\n", "phi2=acosd(0.7)\n", "kVA=8; //rating\n", "phi4=acosd(0.6) \n", "I1=(kW1*1000)/(cosd(phi1)*V2);\n", "I3=(kW3*1000)/(1*V2);\n", "I4=(kVA*1000)/V2;\n", "Ih=((I1*cosd(phi1))+(I2*cosd(phi2))+I3+(I4*cosd(phi4)));\n", "Iv=((I1*sind(phi1))+(I2*sind(phi2))-(I4*sind(phi4)));\n", "I5=sqrt((Ih^2)+(Iv^2))\n", "printf('I5=%dA',I5)\n", "Ip=(I5*V2)/V1;\n", "printf('\nThe current drawn by the primary from 6600Vmains is equal to,Ip=%fA',Ip);\n", "phi=atand(Iv/Ih);\n", "printf('\n\n", "power factor=%flagging',cosd(phi))\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.11: Calculating_equivalent_impedence_referred_to_primary.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating equivalent impedence referred to primary\n", "//Chapter 3\n", "//Example 3.11\n", "//page 212\n", "clear;\n", "clc; \n", "disp('Example 3.11')\n", "kVA=100; //rating of the tronsfromer\n", "N1=400; //number of primary turns\n", "N2=80; //number of secondary turns\n", "R1=0.3; //primary resistance in ohms\n", "R2=0.01; //secondary resistance in ohms\n", "X1=1.1; //primary leakage reactance in ohs\n", "X2=0.035; //secondary leakage reactance in ohms\n", "Rr2=(((N1/N2)^2)*R2)\n", "printf('R2=%f ohms',Rr2);\n", "Xx2=(((N1/N2)^2)*X2);\n", "printf('\nX2=%f ohms',Xx2);\n", "Ze=sqrt((R1+Rr2)^2+(X1+Xx2)^2);\n", "printf('\nEquivqlent impedence=%f',Ze);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.12: Calculating_equivalent_impedence_referred_to_primary.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating equivalent impedence referred to primary\n", "//Chapter 3\n", "//Example 3.12\n", "//page 216\n", "clear;\n", "clc; \n", "disp('Example 3.11')\n", "f=50; //frequency in hertz\n", "r=6; //turns ratio\n", "R1=0.90; //primary resistance in ohms\n", "R2=0.03; //secondary resistance in ohms\n", "X1=5; //primary reactance in ohms\n", "X2=0.13; //secondary reactance in ohms\n", "I2=200; //full-load current\n", "Re=(R1+(R2*r^2));\n", "printf('equivalent resistance reffered to primary,Re=%fohms',Re);\n", "Xe=(X1+(X2*r^2));\n", "printf('\nequivalent reactance reffered to primary,Xe=%fohms',Xe);\n", "Ze=sqrt(Re^2+Xe^2);\n", "printf('\nequivalent impedance reffered to primary,Ze=%fohms',Ze);\n", "Ii2=r*I2;\n", "printf('\nsecondary current reffered to primary side=%fA',Ii2);\n", "printf('\n(a)Voltage to be applied to the high voltage side=%dvolts',(Ii2*Ze));\n", "printf('\n(b)Power factor=%f',(Re/Ze));" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.13: Calculate_current_and_power_input.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate current and power input\n", "//Chapter 3\n", "//Example 3.13\n", "//page 216\n", "clear;\n", "clc; \n", "disp('Example 3.13')\n", "R1=0.21; //primary resistance in ohms\n", "X1=1; //primary reactance in ohms\n", "R2=2.72*10^(-4); //secondary resistance in ohms\n", "X2=1.3*10^(-3); //secondary reactanced in ohms\n", "V1=6600; //primary voltage in volts\n", "V2=250; //secondary voltage in volts\n", "r=V1/V2; //turns ratio\n", "Re=R1+(r^2*R2);\n", "printf('Equivalent resistance referred to primary side=%fohms',Re);\n", "Xe=X1+(r^2*X2);\n", "printf('\nEquivalent reactance referred to primary side=%fohms',Xe);\n", "Ze=sqrt(Re^2+Xe^2);\n", "printf('\nequivalent impedance reffered to primary,Ze=%fohms',Ze);\n", "V=400; //voltage in volts\n", "I1=V/Ze;\n", "printf('\nI1=%f',I1);\n", "printf('\nPower input=%fW',(I1^2*Re));\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.14: Calculate_current_and_power_input.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate current and power input\n", "//Chapter 3\n", "//Example 3.14\n", "//page 217\n", "clear;\n", "clc; \n", "disp('Example 3.14')\n", "N1=90; //number of primary turns\n", "N2=180; //number of secondary turns\n", "R1=0.067; //primary resistance in ohms\n", "R2=0.233; //secondary resistance in ohms\n", "printf('Primary winding resistance referred to secondary side=%fohms',(R1*(N2/N1)^2))\n", "printf('\nsecondary winding resistance referred to primary side=%fohms',(R2*(N1/N2)^2))\n", "printf('\nTotal resistance of the transformer refferred to primary side=%fohms',((R1*(N2/N1)^2)+(R2*(N2/N1)^2)))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.15: Calculate_percentage_regulation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate percentage regulation\n", "//Chapter 3\n", "//Example 3.15\n", "//page 217\n", "clear;\n", "clc; \n", "disp('Example 3.15')\n", "kVA=30; //rating of the transformer\n", "V1=6000; //primary voltage in volts\n", "V2=230; //secondary voltage in volts\n", "R1=10; //primary resistance in ohms\n", "R2=0.016; //secondary resistance in ohms\n", "Xe=23; //total reactance reffered to the primary\n", "phi=acosd(0.8); //lagging\n", "Re=(R1+((V1/V2)^2*R2))\n", "printf('equivalent resistance,Re=%fohms',Re)\n", "I2dash=(kVA*1000)/V1;\n", "V2dash=5847;\n", "Reg=((I2dash*((Re*cosd(phi))+(Xe*sind(phi))))*100)/V2dash;\n", "printf('\npercentage regulation=%fpercent',Reg)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.16: Calculating_secondary_voltage_and_voltage_regulation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating secondary voltage and voltage regulation\n", "//Chapter 3\n", "//Example 3.16\n", "//page 218\n", "clear;\n", "clc; \n", "disp('Example 3.16')\n", "kVA=10; //rating of the transformer\n", "V1=2000; //primary voltage in volts\n", "V2=400; //secondary voltage in volts\n", "R1=5.5; //primary voltage in ohms\n", "R2=0.2; //secondary voltage in ohms\n", "X1=12; //primary reactance in ohms\n", "X2=0.45; //secondary reactance in ohms\n", "//assuming (V1/V2)=(N1/N2)\n", "Re=R2+(R1*(V2/V1)^2);\n", "printf('equivalent resistance referred to the secondary=%fohms',Re);\n", "Xe=X2+(X1*(V2/V1)^2);\n", "printf('equivalent reactance referred to the secondary=%fohms',Xe);\n", "Ze=sqrt(Re^2+Xe^2);\n", "printf('equivalent impedance referred to the secondary=%fohms',Ze);\n", "phi=acosd(0.8);\n", "Vl=374.5;\n", "printf('\nVoltage across the full load and 0.8 p.f lagging=%fV',Vl);\n", "reg=((V2-Vl)*100)/Vl;\n", "printf('\npercentage voltage regulation=%f percent',reg);\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17: Calculating_regulation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating regulation\n", "//Chapter 3\n", "//Example 3.17\n", "//page 219\n", "clear;\n", "clc; \n", "disp('Example 3.17')\n", "kVA=80; //rating of the transformer\n", "V1=2000; //primary voltage in volts\n", "V2=200; //secondary voltage in volts\n", "f=50; //frequency in hertz\n", "Id=8; //impedence drop\n", "Rd=4; //resistance drop\n", "phi=acosd(0.8)\n", "I2Ze=(V2*Id)/100;\n", "I2Re=(V2*Rd)/100;\n", "I2Xe=sqrt(I2Ze^2-I2Re^2)\n", "reg=((I2Re*cosd(phi))+(I2Xe*sind(phi)))*(100/V2)\n", "printf('percentage regulation=%fpercent',reg)\n", "pf=I2Xe/sqrt(I2Re^2+I2Xe^2)\n", "printf('\nPower factor for zero regulation=%f(leading)',pf)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.19: Calculating_the_efficiency_and_voltage_regulation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating the efficiency and voltage regulation//Chapter 3\n", "//Example 3.19\n", "//page 225\n", "clear;\n", "clc;\n", "disp('Example 3.19')\n", "kVA=50; //rating of the transformer\n", "V1=3300; //open circuit primary voltage\n", "Culoss=540; //copper loss from short circuit test\n", "coreloss=460; //core loss from open circuit test\n", "V1sc=124; //short circuit primary voltage in volts\n", "I1sc=15.4; //short circuit primary current in amperes\n", "Psc=540 //short circuit primary power in watts \n", "phi=acosd(0.8)\n", "effi=(kVA*1000*cosd(phi)*100)/((kVA*1000*cosd(phi))+Culoss+coreloss)\n", "printf('From the open-circuit test, core-loss=%dW',coreloss);\n", "printf('\nFrom short circuit test, copper loss=%dW',Culoss);\n", "printf('\nThe efficiency at full-load and 0.8 lagging power factor=%f',effi);\n", "Ze=V1sc/I1sc;\n", "Re=Psc/I1sc^2;\n", "Xe=sqrt(Ze^2-Re^2);\n", "V2=3203;\n", "phi2=acosd(0.8);\n", "phie=acosd(Culoss/(V1sc*I1sc));\n", "reg=(V1sc*cosd(phie-phi2)*100)/V1;\n", "printf('\nVoltage regulation=%dpercent',reg)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: calculating_number_of_turns_and_primary_and_secondary_currents_and_value_of_flux.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//calculating number of turns,primary and secondary currents and value of flux\n", "//Chapter 3\n", "//Example 3.1\n", "//page 196\n", "clear;\n", "clc; \n", "disp('Example 3.1')\n", "kVA=500; //rating\n", "V1=11000; //primary voltage in volts\n", "V2=400; //secondary voltage in volts\n", "N2=100; //number of turns in secondary winding\n", "f=50; //frequency in hertz\n", "N1=(V1*N2)/V2; //number of turns in primary winding\n", "printf('number of turns in primary winding,N1=%dturns',N1)\n", "I1=(kVA*1000)/V1;\n", "I2=(kVA*1000)/V2\n", "printf('\nprimary current,I1=%fA',I1)\n", "printf('\nsecondary current,I2=%fA',I2)\n", "E1=V1;\n", "phi=E1/(4.44*f*N1)\n", "printf('\nmaximium flux in the core=%fWb',phi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.20: Calculate_voltsge_to_be_applied.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate voltsge to be applied//Chapter 3\n", "//Example 3.20\n", "//page 226\n", "clear;\n", "clc;\n", "disp('Example 3.20')\n", "kVA=100;\n", "V1=6600; //primary voltage in volts\n", "V2=330; //secondary voltage in volts\n", "f=50; //frequency in hertz\n", "V1sc=100; //short circuit primary voltage in volts\n", "I1sc=10; //short circuit primary current in amperes\n", "Psc=436; //short circuit primary power in watts \n", "Ze=V1sc/I1sc;\n", "Re=Psc/I1sc^2;\n", "phi=acosd(0.8);\n", "Xe=sqrt(Ze^2-Re^2);\n", "printf('\nTotal resistance=%fohms',Re);\n", "printf('\nTotal impedence=%fohms',Ze)\n", "Il=(kVA*1000)/V1;\n", "V1dash=(sqrt(((V1*cosd(phi))+(Il*Re))^2+((V1*sind(phi))+(Il*Xe))^2));\n", "printf('\nfull voltage current,V1=%dV',V1dash)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.21: Calculate_circuit_constants_and_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate circuit constants and efficiency //Chapter 3\n", "//Example 3.21\n", "//page 227\n", "clear;\n", "clc;\n", "disp('Example 3.21')\n", "V2=500; //secondary voltage in volts\n", "V1=250; //primary voltage in short circuit test in volts\n", "I0=1; //current in short circuit test in amperes\n", "P=80; //core loss in watt\n", "Psc=100; //power in short circuit test in watts\n", "Vsc=20; //short circuit voltage in volts \n", "Isc=12; //short circuit current in amperes\n", "phi0=acosd(P/(V1*I0));\n", "printf('From open circuit test , cos(phi0)=%f',cos(phi0));\n", "Ic=I0*cosd(phi0);\n", "printf('\nLoss component of no-load current,Ic=%fA',Ic)\n", "Im=sqrt(I0^2-Ic^2);\n", "printf('\nMagnetising current,Im=%fA',Im);\n", "Rm=V1/Ic;\n", "Xm=V1/Im;\n", "Re=Psc/(Isc^2);\n", "Ze=Vsc/Isc;\n", "Xe=sqrt(Ze^2-Re^2);\n", "printf('\n\nEquvalent resistance referred to secondary=%fohms',Re);\n", "printf('\nEquvalent reactance referred to secondary=%fohms',Xe);\n", "printf('\nEquvalent impedance referred to secondary=%fohms',Ze);\n", "K=V2/V1; //turns ratio\n", "printf('\n\nEquvalent resistance referred to primary=%fohms',(Re/K^2));\n", "printf('\nEquvalent reactance referred to primary=%fohms',(Xe/K^2));\n", "printf('\nEquvalent impedance referred to primary=%fohms',(Ze/K^2));\n", "V=500; //output in volts\n", "I=10; //output current in amperes\n", "phi=acosd(0.80);\n", "effi=(V*I*cosd(phi)*100)/((V*I*cosd(phi))+P+((I)^2*Re));\n", "printf('\nEffiency=%fpercent',effi);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.22: Calculate_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate efficiency //Chapter 3\n", "//Example 3.22\n", "//page 231\n", "clear;\n", "clc;\n", "disp('Example 3.22')\n", "kVA=200; //Rating of the transformer\n", "Pin=3.4; //power input to two transformer in watt\n", "Pin2=5.2;\n", "coreloss=Pin; //core loss of two transformers\n", "phi=acosd(0.8);\n", "printf('\nCore loss of two transformer=%fkW',Pin)\n", "printf('\nCore loss of each transformer=%fkW',(Pin/2))\n", "printf('\nFull load copper loss of the two transformer=%fkW',Pin2)\n", "printf('Therefore,full load copper loss of each transformer=%fkW',(Pin2/2));\n", "effi=(kVA*cosd(phi)*100)/((kVA*cosd(phi))+(Pin/2)+(Pin2/2))\n", "printf('\nFull load efficiency at 0.8 p.f. lagging=%fpercent',effi);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.24: Calculate_efficiency_of_transformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate efficiency of transformer //Chapter 3\n", "//Example 3.24\n", "//page 233\n", "clear;\n", "clc;\n", "disp('Example 3.24')\n", "kVA=50; //rating of the transformer\n", "V1=6360; //primary voltage rating\n", "V2=240; //secondary voltage rating\n", "pf=0.8\n", "coreloss=2; //core loss in kilo watt from open circuit test\n", "Culoss=2; //copper loss at secondary current of 175A\n", "I=175; //current in amperes\n", "I2=(kVA*1000)/V2;\n", "printf('Full load secondary current,I2=%fA',I2);\n", "effi=(kVA*pf*100)/((kVA*pf)+coreloss+(Culoss*(I2/I)^2))\n", "printf('\nEfficiency=%fpercent',effi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.25: Calculate_efficiency_of_transformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate efficiency of transformer //Chapter 3\n", "//Example 3.25\n", "//page 234\n", "clear;\n", "clc;\n", "disp('Example 3.25')\n", "kVA=500; //rating of the transformer\n", "R1=0.4; //resistance in primary winding inohms\n", "R2=0.001; //resistance in secondary winding in ohms\n", "V1=6600; //primary voltahe in volts\n", "V2=400; //secondary voltage in volts\n", "ironloss=3; //iron loss in kilowatt\n", "pf=0.8; //power factor lagging\n", "I1=(kVA*1000)/V1; \n", "printf('\nPrimary winding current=%fA',I1);\n", "I2=(I1*V1)/V2;\n", "printf('\nSecondary winding current=%fA',I2);\n", "Culoss=((I1^2*R1)+(I2^2*R2));\n", "printf('\nCopper losses in the two winding=%fWatts',Culoss);\n", "effi=(kVA*pf*100)/((kVA*pf)+ironloss+(Culoss/1000));\n", "printf('\nEfficiency at 0.8 p.f=%fpercent',effi);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.26: Calculate_efficiency_of_transformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate efficiency of transformer //Chapter 3\n", "//Example 3.26\n", "//page 234\n", "clear;\n", "clc;\n", "disp('Example 3.26')\n", "kVA=400; //rating of the transformer\n", "ironloss=2; //iron loss in kilowatt\n", "pf=0.8; //power factor\n", "kW=240; //load in kilowatt\n", "kVA1=kW/pf;\n", "disp('Efficiency is maximium when,core-loss=copper-loss')\n", "coreloss=ironloss;\n", "disp('Maximium efficiency occurs at 240kw,0.8 power factor,i.e., at 300kVA load')\n", "Cl300=coreloss;\n", "Cl400=(Cl300*(kVA/kVA1)^2);\n", "pf1=0.71; //power factor for full load\n", "effi=(kVA*pf1*100)/((kVA*pf1)+coreloss+Cl400);\n", "printf('\nEfficiency at full-load and 071 power factor=%dpercent',effi);\n", "pf2=1 //maximium efficiency occurs at unity power factor\n", "MAXeffi=(kVA1*pf2*100)/((kVA1*pf2)+coreloss+Cl300)\n", "printf('\nMaximium efficiency at 300kVA and unity power factor=%fpercent',MAXeffi);\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.27: Calculate_efficiency_of_transformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate efficiency of transformer //Chapter 3\n", "//Example 3.27\n", "//page 235\n", "clear;\n", "clc;\n", "disp('Example 3.27')\n", "kVA=40; //rating of the transformer\n", "coreloss=450; //core-loss in watts\n", "Culoss=800; //copper loss in watt\n", "pf=0.8; //power factor of the load\n", "FLeffi=(kVA*pf*100)/((kVA*pf)+((coreloss+Culoss)/1000));\n", "printf('Full-load efficiency=%fpercent',FLeffi);\n", "disp('For maximium efficiency, Core loss=copper loss')\n", "Culoss2=coreloss; //for maximium efficiency\n", "n=sqrt(Culoss2/Culoss);\n", "kVA2=n*kVA; //load for maximium efficiency\n", "MAXeffi=(kVA2*pf*100)/((kVA2*pf)+((coreloss+Culoss2)/1000));\n", "printf('\nValue of maximium efficiency=%fpercent',MAXeffi);\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.28: Calculate_current_in_different_parts_of_winding_of_autotransformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate efficiency of transformer //Chapter 3\n", "//Example 3.29\n", "//page 236\n", "clear;\n", "clc;\n", "disp('Example 3.29')\n", "kVA=50; //rating of the transformers\n", "I1=250; //primary current in amperes\n", "Re=0.006; //total resistance referred to the primary side\n", "ironloss=200; //iron loss in watt\n", "Culoss=(I1^2*Re); //copper loss in watt\n", "pf=0.8; //power factor lagging\n", "printf('Full-load copper loss=%fW',Culoss);\n", "TL1=((Culoss+ironloss)/1000); \n", "printf('\nTotal loss on full load=%fkW',TL1);\n", "TL2=((((Culoss*(1/2)^2))+ironloss)/1000)\n", "printf('\nTotal loss on half load=%fkW',TL2);\n", "effi1=(kVA*pf*100)/((kVA*pf)+TL1);\n", "printf('\nEfficiency at full load,0.8 power factor lagging=%f percent',effi1)\n", "effi2=((kVA/2)*pf*100)/(((kVA/2)*pf)+TL2);\n", "printf('\nEfficiency at half load,0.8 power factor lagging=%f percent',effi2)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.29: Calculate_efficiency_of_transformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate efficiency of transformer //Chapter 3\n", "//Example 3.30\n", "//page 237\n", "clear;\n", "clc;\n", "disp('Example 3.30')\n", "kVA=10; //rating of the transformers\n", "V1=400; //primary voltage in volts\n", "V2=200; //secondary voltage in volts\n", "f=50; //frequency in hertz\n", "MAXeffi=0.96; //maximium efficiency\n", "output1=(kVA*0.75); //output at 75% of full load\n", "input1=(output1/MAXeffi);\n", "printf('\nInput at 75percent of full load=%fkW',input1);\n", "TL=input1-output1;\n", "printf('\nTotal losses=%fkW',TL);\n", "Pi=TL/2;\n", "Pc=TL/2;\n", "disp('Maximiunm efficiency occurs at 3/4th of full load')\n", "Pc=Pi/(3/4)^2;\n", "printf('\nThus,total losses on full load=%fW',((Pc+Pi)*1000));\n", "pf=0.8; //power factor lagging\n", "effi=(kVA*pf*100)/((kVA*pf)+(Pc+Pi));\n", "printf('\nEfficiency on full load. 0.8 power factor lagging=%fpercent',effi)\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: calculating_number_of_primary_and_secondary_turns.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//calculating number of primary and secondary turns\n", "//Chapter 3\n", "//Example 3.2\n", "//page 196\n", "clear;\n", "clc; \n", "disp('Example 3.2')\n", "V1=6600; //primary voltage in volts\n", "V2=230; //secondary voltage in volts\n", "f=50; //frequency in hertz\n", "Bm=1.1; //flux density in Wb/m^2\n", "A=(25*25*10^(-4)); //area of the core in m^2\n", "phi=Bm*A\n", "printf('flux=%fWb',phi)\n", "E1=V1;\n", "E2=V2;\n", "N1=E1/(4.44*f*phi);\n", "N2=E2/(4.44*f*phi);\n", "printf('\nnumber of turns in primary winding,N1=%dturns',N1)\n", "printf('\nnumber of turns in secondary winding,N2=%dturns',N2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.30: Calculate_efficiency_of_transformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate voltage regulation of transformer //Chapter 3\n", "//Example 3.31\n", "//page 237\n", "clear;\n", "clc;\n", "disp('Example 3.31')\n", "kVA=500; //rating of the transformers\n", "V1=3300; //primary voltage in volts\n", "V2=500; //secondary voltage in volts\n", "f=50; //frequency in hertz\n", "MAXeffi=0.97; \n", "x=0.75; //fraction of full load for maximium efficiency\n", "pf1=1;\n", "output1=(kVA*x*pf1*1000);\n", "printf('Output at maximium efficiency=%dwatts',output1);\n", "losses=((1/MAXeffi)-1)*output1;\n", "printf('\nThus, at maximium efficiency,\n lossses=%fW',losses)\n", "Culoss=losses/2;\n", "printf('\nCopper losses at 75percent of full load=%dW',Culoss);\n", "CulossFL=Culoss/x^2;\n", "printf('\nCopper losses at full load=%dW',CulossFL);\n", "Re=CulossFL/(kVA*1000);\n", "Ze=0.1; //equivalent impedence per unit\n", "Xe=sqrt(Ze^2-Re^2);\n", "phi=acosd(0.8);\n", "reg=((Re*cosd(phi))+(Xe*sind(phi)))*100;\n", "printf('\npercentage regulation=%f percent',reg);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.32: Calculate_current_in_different_parts_of_winding_of_autotransformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculate current in different parts of winding of autotransformer//Chapter 3\n", "//Example 3.32\n", "//page 240\n", "clear;\n", "clc;\n", "disp('Example 3.32')\n", "V1=230; //primary voltage of auto-transformer\n", "V2=75; //secondary voltage of auto-transformer\n", "r=(V1/V2); //ratio of primary to secondary turns\n", "I2=200; //load current in amperes\n", "I1=I2/r;\n", "printf('Primary current,I1=%fA',I1);\n", "printf('\nLoad current,I1=%fA',I2);\n", "printf('\ncirrent flowing through the common portion of winding=%fA',(I2-I1));\n", "printf('\nEconomy in saving in copper in percentage=%fpercent',(100/r));\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: calculating_induced_emf_and_maximium_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//calculating induced emf and maximium flux density\n", "//Chapter 3\n", "//Example 3.3\n", "//page 197\n", "clear;\n", "clc; \n", "disp('Example 3.3')\n", "V1=230; //primary voltage in volts\n", "f=50; //frequency in hertz\n", "N1=100; //number of primary turns\n", "N2=400; //number of secondary turns\n", "A=250*10^(-4); //cross section area of core in m^2\n", "disp('since at no-load E2=V2')\n", "E2=(V1*N2)/N1;\n", "printf('induced secondary winding,E2=%dV',E2);\n", "phi=E2/(4.44*f*N2);\n", "Bm=phi/A;\n", "printf('\nMaximium flux density in the core=%fWb/m^2',Bm)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: calculating_induced_emf_and_maximium_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//calculating induced emf and maximium flux density\n", "//Chapter 3\n", "//Example 3.3\n", "//page 197\n", "clear;\n", "clc; \n", "disp('Example 3.3')\n", "kVA=40; //rating of the transformer\n", "V1=2000; //primary side voltage in volts\n", "V2=250; //secondary side voltage in volts\n", "R1=1.15; //primary resistance in ohms\n", "R2=0.0155; //secondary resistance in ohms\n", "R=R2+(((V2/V1)^2)*R1)\n", "printf('Total resistance of the transformer in terms of the secondary winding=%fohms',R)\n", "I2=(kVA*1000)/V2;\n", "printf('\nFull load secondary current=%dA',I2)\n", "printf('\nTotal resistance load on full load=%fVolts',(I2*R))\n", "printf('\nTotal copper loss on full load=%fWatts',((I2)^2*R))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Calculating_the_current_and_power_factor_of_the_primary_circuit.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating the current and power factor of the primary circuit\n", "//Chapter 3\n", "//Example 3.5\n", "//page 206\n", "clear;\n", "clc; \n", "disp('Example 3.5')\n", "I2=300;........................//Secondary current in amperes\n", "N1=1200; //number of primary turns\n", "N2=300; //number of secondary turns\n", "I0=2.5; //load current in amperes\n", "I1=(I2*N2)/N1;\n", "phi0=acosd(0.2);\n", "phi2=acosd(0.8);\n", "I1c=(I1*cosd(phi2))+(I0*cosd(phi0));\n", "I1s=(I1*sind(phi2))+(I0*sind(phi0));\n", "I=sqrt(I1c^2+I1s^2);\n", "phi=atand(I1s/I1c)\n", "printf('primary power factor=%fdegrees',cosd(phi));" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6: Calculating_the_value_of_primary_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating the value of primary current\n", "//Chapter 3\n", "//Example 3.6\n", "//page 207\n", "clear;\n", "clc; \n", "disp('Example 3.6')\n", "I0=1.5; //no-load current\n", "phi0=acosd(0.2)\n", "I2=40; //secondary current in amperes\n", "phi2=acosd(0.8)\n", "r=3; //ratio of primary and secondary turns\n", "I1=I2/r; \n", "I1c=(I1*cosd(phi2))+(I0*cosd(phi0));\n", "I1s=(I1*sind(phi2))+(I0*sind(phi0));\n", "I=sqrt(I1c^2+I1s^2);\n", "printf('I1=%fA',I)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.7: Calculating_the_magnetising_current_and_core_loss_and_flux.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating the magnetising current,core loss and flux\n", "//Chapter 3\n", "//Example 3.7\n", "//page 208\n", "clear;\n", "clc; \n", "disp('Example 3.7')\n", "V1=230; //voltage in volts\n", "f=50; //frequency of supply in hertz\n", "N1=250; //number of primary turns\n", "I0=4.5; //no-load current in amperes\n", "phi0=acosd(0.25);\n", "Im=I0*sind(phi0)\n", "printf('magnetising current,Im=%fA',Im);\n", "Pc=V1*I0*cosd(phi0);\n", "printf('\nCore loss=%dW',Pc)\n", "disp('neglecting I^2R loss in primary winding at no-load')\n", "E1=V1;\n", "phi=E1/(4.44*f*N1);\n", "printf('\nMaximium value of flux in the core=%fWb',phi)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.8: Calculating_the_current_and_power_factor_of_the_primary_circuit.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating the current and power factor of the primary circuit\n", "//Chapter 3\n", "//Example 3.8\n", "//page 209\n", "clear;\n", "clc; \n", "disp('Example 3.8')\n", "I2=30;........................//Secondary current in amperes\n", "I0=2; //load current in amperes\n", "V1=660; //primary voltage in volts\n", "V2=220; //secondary voltage in volts\n", "I1=(I2*V2)/V1;\n", "phi0=acosd(0.225);\n", "phi2=acosd(0.9);\n", "I1c=(I1*cosd(phi2))+(I0*cosd(phi0));\n", "I1s=(I1*sind(phi2))+(I0*sind(phi0));\n", "I=sqrt(I1c^2+I1s^2);\n", "phi=atand(I1s/I1c)\n", "printf('I1=%fA',I)\n", "printf('\nprimary power factor=%fdegrees',cosd(phi));" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.9: Calculating_magnetising_current_and_primary_current_and_primary_power_factor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Calculating magnetising current,primary current and primary power factor\n", "//Chapter 3\n", "//Example 3.9\n", "//page 210\n", "clear;\n", "clc; \n", "disp('Example 3.9')\n", "phi_m=7.5*10^(-3); //maximium flux\n", "f=50; //frequecy in hertz\n", "N1=144; //number of primary turns\n", "N2=432; //number of secondary turns\n", "kVA=0.24; //rating of transformer\n", "E1=(4.44*phi_m*f*N1)\n", "V1=E1;\n", "printf('V1=%dV',V1)\n", "I0=(kVA*1000)/V1;\n", "phi0=acosd(0.26);\n", "Im=I0*sind(phi0);\n", "printf('\nIm=%fA',Im);\n", "V2=(E1*N2)/N1\n", "printf('\nV2=%fV',V2)\n", "disp('At a load of 1.2kVA and power factor of 0.8 lagging')\n", "kVA=1.2;\n", "phi2=acosd(0.8);\n", "I2=(kVA*1000)/V2;\n", "I=(I2*N2)/N1;\n", "I1c=(I*cosd(phi2))+(I0*cosd(phi0));\n", "I1s=(I*sind(phi2))+(I0*sind(phi0));\n", "I=sqrt(I1c^2+I1s^2);\n", "printf('\nI1=%fA',I);\n", "phi=acosd(((I*cosd(phi2))+(I0*cosd(phi0)))/I);\n", "printf('\nprimary power factor=%flagging',cosd(phi))" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }