{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Electromechanical Energy Conversion Principles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Finding_Torque_acting_on_the_rotor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding Torque acting on the rotor\n", "\n", "close;\n", "clc;\n", "syms alpha;\n", "I=10;//current\n", "B_o=0.5;//magnetic field\n", "R=0.1;\n", "l=0.6;\n", "\n", "T=2*I*B_o*R*l*sin(alpha);\n", "\n", "disp(T,'Torque acting on the rotor=');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Finding_magnetic_stored_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding magnetic stored energy\n", "\n", "close;\n", "clc;\n", "syms x d;\n", "constt=0.5*1000^2*4*%pi*10^-7*0.15*0.1*10^2/(2*0.002);\n", "\n", "W_fld=constt*(1-x/d);//in joules\n", "\n", "disp(W_fld,'magnetic stored energy=');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: Finding_force_on_the_plunger.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding force on the plunger\n", "clear;\n", "close;\n", "clc;\n", "U_o=4*%pi*10^-7;\n", "\n", "function [f]=force(N,l,g,i)\n", " f=-(N^2*U_o*l*i^2/(4*g));\n", "endfunction\n", "\n", "f_fld=force(1000,0.1,0.002,10);//force in N\n", "\n", "disp(f_fld,'force on the plunger when current=10A');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: Finding_Torque_acting_on_the_rotor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding Torque acting on the rotor\n", "clear;\n", "close;\n", "clc;\n", "\n", "U_o=4*%pi*10^-7;\n", "\n", "function [T]=torque(B,h,g,r)\n", " T=(B^2*g*h*(r+g*.5))/U_o;\n", " endfunction\n", " \n", " T_fld=torque(2,0.02,0.002,0.02);//Maximum torque in N.m\n", " \n", " disp(T_fld,'Torque acting on the rotor');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Finding_Torue_of_given_system.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding Torue of given system \n", "clear;\n", "close;\n", "clc;\n", "syms x i1 i2\n", "L_11=(3+cos(2*x))*10^(-3);\n", "L_12=0.1*cos(x);\n", "L_22=30+10*cos(2*x);\n", "W=0.5*L_11*i1^2+L_12*i1*i2+0.5*L_22*i2^2;\n", "T=diff(W,x);\n", "disp(T,'Torque = ');\n", "i1=1;//in Ampere\n", "i2=0.01;//in Ampere\n", "k=eval(T);\n", "disp(k,'Torue of given system = ');\n", "" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }