{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Magnetic Circuits and Magnetic Materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.1: Finding_reluctances_and_flux.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding reluctances and flux\n", "\n", "clear;\n", "close;\n", "clc;\n", "U_r=70000;\n", "U_o=4*%pi*10^-7;\n", "\n", "function [R_c]=reluctance_core(l,A)\n", " R_c=l/(U_r*U_o*A);\n", "endfunction\n", "disp(reluctance_core(.3,9*10^-4),'Reluctance of the core=')\n", "\n", "function [R_g]=reluctance_gap(g,A)\n", " R_g=g/(U_o*A);\n", "endfunction\n", "disp(reluctance_gap(5*10^-4,9*10^-4),'Reluctance of the gap=')\n", "\n", "phy=1.0*9*10^-4;\n", "disp(phy,'flux=')\n", "\n", "i=phy*(reluctance_core(.3,9*10^-4)+reluctance_gap(5*10^-4,9*10^-4))/500;\n", "disp(i,'current=')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2: Finding_air_gap_flux.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding air gap flux\n", "clear;\n", "close;\n", "clc;\n", "N=1000;\n", "I=10;\n", "U_o=4*%pi*10^-7;\n", "A_g=.2;\n", "g=.01;\n", "phy=(N*I*U_o*A_g)/(2*g);\n", "disp(phy,'flux=')\n", "B_g=phy/A_g;\n", "disp(B_g,'flux density=')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.4b: Finding_Induced_voltage_of_a_magnetic_circuit.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding Induced voltage of a magnetic circuit \n", "\n", "close;\n", "clc;\n", "syms t\n", "\n", "w=2*%pi*60//angular frequency\n", "\n", "B=1.0*sin(w*t);\n", "N=500;\n", "A=9*10^-4;\n", "e=N*A*diff(B,t);\n", "\n", "disp(e,'Induced Voltage = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.5: Finding_current_from_dc_magnetization_curve.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding current from dc magnetization curve\n", "clear;\n", "close;\n", "clc;\n", "H_c=12;//from fig at B_c=1 T\n", "l_c=0.3;\n", "F_c=H_c*l_c;//mmf of core path\n", "F_g=(5*10^-4)/(4*%pi*10^-7);//mmf of air gap\n", "i=(F_c+F_g)/500;//current in Amperes\n", "disp(i,'current=');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.6a: Finding_applied_voltage_to_the_windinds_with_magnetic_core.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Finding applied voltage to the windinds with magnetic core\n", "close;\n", "clc;\n", "syms t\n", "\n", "w=377;//angular frequency\n", "\n", "B=1.5*sin(w*t);\n", "N=200; \n", "A=16*10^-4;//area\n", "a=0.94;//steel occupies 0.94 times the gross core volume\n", "e=N*A*a*diff(B,t);\n", "\n", "disp(e,'applied Voltage = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.8: Finding_minimum_magnet_volume.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding minimum magnet volume\n", "clear;\n", "close;\n", "clc;\n", "\n", "function [A_m]=area(B_g,B_m)\n", " A_m=2*B_g/B_m;\n", "endfunction\n", "a=area(0.8,1.0);//from fig\n", "L_m=-0.2*0.8/(4*%pi*10^-7*-40*10^3);\n", "\n", "volume=a*L_m;//minimum magnet volume\n", "disp(volume,'minimum magnet volume in cm cube');\n", "\n", "" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }