{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: Magnetisn and ac theroy" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.10: power_loss_ratio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "v=15*10^3 //voltage\n", "p=80*10^3 //power\n", "r=430 //resistence\n", "v1=150*10^3//stepped value\n", "//calculation\n", "i=p/v//cable current\n", "i1=p/v1//stepped up cable current\n", "k=i*i/(i1*i1)//ratio of power loss\n", "//output\n", "printf('the ratio of power loss is %d',k)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.11: secondary_power_output.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "ep=150*10^3 //electric energy to primary\n", "e=0.69 //efficieny\n", "t=70 //time\n", "//calculation\n", "es=e*ep//transformer equation\n", "ps=es/t//power\n", "//output\n", "printf('the power output is %3.3e W',ps)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.12: charge_produced.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "v=250 //dc voltage\n", "s=0.22 //length\n", "d=4*10^-3 //diameter\n", "//calculation\n", "q=8.9*10^-12*1*0.22*0.22*250/(4*10^-3)//for air\n", "q1=8.9*10^-12*6.8*0.22*0.22*250/(4*10^-3)//for material\n", "//output\n", "printf('the permittivity for air is %3.3e C',q)\n", "printf('\n the relative permittivity for material is %3.3e C',q1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.13: relative_permittivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "d=6*10^-5\n", "w=0.1\n", "er=9.4 //relative permittivity of medium\n", "c=1*10^-6 //capacitance\n", "//calculation\n", "l=c*d/(8.9*10^-12*er*w)//parallel plate capacitor formula\n", "//output\n", "printf('the length of wax paper is %3.3f m',l)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.14: charge_in_capacitors.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "v=3 //voltage\n", "c1=2.5*10^-6 //capacitance\n", "c2=2.5*10^-6\n", "c3=2.5*10^-6\n", "//calculation\n", "q=v/((1/c1)+(1/c2)+(1/c3))//capacitors in series\n", "q1=c1*v//capacitors in parallel\n", "//output\n", "printf('the pd when capacitors are in series is %3.3e C',q)\n", "printf('\n the pd when capacitors are in parallel is %3.3e C',q1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.15: rms_and_peak_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "v=14 //voltage\n", "//calculation\n", "v0=v*sqrt(2)//rms value\n", "//output\n", "printf('rms value of ac is 14 V')\n", "printf('\n the peak value of ac is %3.3f V',v0)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.16: Qmax_and_rms_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "c=65*10^-6 //capcacitor\n", "v=12 //voltage\n", "f=90 //frequency\n", "//calculation\n", "vmax=v*sqrt(2)//peak pd\n", "qmax=c*vmax//from eqn Q=CV\n", "irms=v*2*%pi*f*c//maximum charge from capacitor reactance\n", "//output\n", "printf('the maximum charge is %3.3f A',irms)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.17: capacitance_of_C.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "r=200 //resistence\n", "v=14 //voltage\n", "vr=9//pd across each component\n", "f=90 //frequency\n", "//calculation\n", "c=vr/(2*%pi*f*vr*r)//capacitor connected\n", "//output\n", "printf('the capacitor connected is %3.3e F',c)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.18: rate_of_change_of_pd.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "v=4 //voltage\n", "r=200 //resistence\n", "c=8.8*10^-6 //capacitance\n", "//calculation\n", "x=v/(r*c)//calculating V/t\n", "//output\n", "printf('the initial rate is %3.3e Vs^-1',x)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.19: determine_resistance_and_capacitance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "v=14 //voltage\n", "f=90 //frequency\n", "i=0.4 //current\n", "t=55 //phase\n", "//calculation\n", "r=v/(i*sqrt(1+tand(t)^2))// value of resistance\n", "l=r*tand(t)/(2*f*%pi)//value of inductance\n", "c=1/(4*%pi*%pi*f*f*l)//value of capacitance for resonance to occur\n", "//output\n", "printf('the value of resistance is %3.3f ohm',r)\n", "printf('\nthe value of inductance is %3.3f H',l)\n", "printf('\nthe value of capacitor is %3.3e F',c)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1: force_on_field.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "B=4.3*10^-4//magnetic flux density\n", "I=6.4//current \n", "L=4.8//length of wire\n", "t=24//inclination through the field\n", "//calculation\n", "f=B*I*L//force on wire when it is perpendicular\n", "f1=B*I*L*sind(t)//force on wire when it is inclined at t degrees\n", "//output\n", "printf('the force on wire is %3.3f N',f)\n", "printf('\nthe force at an anglr 24 deg is %3.3e N',f1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2: flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "i=3.4 //current passing\n", "a=0.04 //distance from centre of cconductor\n", "//calcution\n", "b=(4*%pi*10^-7*5)/(2*%pi*a)//magnetic flux density\n", "//output\n", "printf('the flux density is %3.3e T',b)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4: permeability_of_free_space.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//INPUT DATA\n", "Ix=1 //current in first wire\n", "Iy=1 //current in second wire\n", "FbyL=2*10^-7 //according to the definition of ampere\n", "a=1 //distance between the wires\n", "\n", "\n", "//calculation\n", "\n", "m=(2*%pi*a*FbyL)/(Ix*Iy)\n", "\n", "\n", "\n", "//output\n", "printf('the permeability of free space is %3.3e H/m ',m)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5: faraday_law.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "n=10 //number of rounds\n", "B=2*10^-2 //flux density\n", "a=5*10^-4 //areaof cross section\n", "t=10//time\n", "//calculation\n", "c=n*B*a //change in flux\n", "emf=c/t //induced emf\n", "//output\n", "printf('the flux changed is %3.3e Wb ',c)\n", "printf('\n the induced emf is %3.3e V',emf)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.6: moment_of_couple.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "N=250 //number of turns\n", "B=8.6*10^-4 //flux density\n", "I=5 //current\n", "A=16*10^-4//area\n", "t=35\n", "//calculation\n", "c=B*I*A*N*sind(t)//moment of couple\n", "x=c/(B*I*2*A*N)//doubling the area\n", "y=asind(x)\n", "//output\n", "printf('the moment of couple is %3.3e Nm',c)\n", "printf('\n the new angle produced is %3.3f deg',y)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.7: maximum_emf_power.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "a=20*10^-4 //area\n", "n=900 //number of turns\n", "b=5*10^-2 //flux density\n", "i=4.5 //current\n", "//calculation\n", "e=b*a*n*2*%pi*30//emf induced\n", "p=e*i//power output\n", "//output\n", "printf('the emf induced is %3.3f V',e)\n", "printf('\n the power output is %3.3f W',p)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.8: pd_across_motor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "R=68 //resistence\n", "i=4.5 //current\n", "e=17 //emf\n", "//calculation\n", "v=(i*R)+e//supply pd\n", "//output\n", "printf('the supply of pd across motor is %3.0f V',v)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.9: transformer_equation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "ns=330 //number of turns of secondary\n", "np=450 //number of turns in primary\n", "e=0.65 //efficiency\n", "vp=240 //ac supply of primary\n", "//calculation\n", "vs=e*(vp*ns)/np//transformer equation\n", "//output\n", "printf('the pd across secondary is %3.0f V',vs)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }