{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 10: Physical Optics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.1: plancks_theory.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "h=6.6*10^-34 //plancks constant\n", "c=3*10^8 //velocity of light\n", "e1=12.34//excited state\n", "e2=14.19//ground state\n", "//calculation\n", "l=(h*c)/((e2-e1)*1.6*10^-19)//conservation of energy and plancks theory\n", "//output\n", "printf('the wavelength is %3.3e m',l)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.2: wavelength_and_prism_angle.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "la=0.535*10^-6//wavelength\n", "nb=1.51//refractive index\n", "dmin=34 //minimum deviation\n", "//calculation\n", "l=la/nb//wavelength of light\n", "x=(nb-cosd(dmin/2))/sind(dmin/2)//refractive index of prism\n", "y=acotd(x)\n", "z=y*2\n", "//output\n", "printf('the wavelength of light is %3.3e m',l)\n", "printf('\nthe angle of prism is %3.0d deg',z)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.3: thin_film_interference.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "n=7//order of fringe\n", "l=0.63*10^-6 //wavelength\n", "x=24.8*10^-3 //seperation of bands\n", "d=1.5\n", "//calculation\n", "a=n*d*l/x//slit seperation\n", "//output\n", "printf('the slit seperation is %3.3e m',a)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.4: fringe_width_determination.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "n=6//order of fringe\n", "l=0.63*10^-6 //wavelength\n", "x=24.8*10^-3 //seperation of bands\n", "d=1.5\n", "a=2.7*10^-4\n", "//calculation\n", "x=d*(6+1/2)*l/a//distance between centre and sixth fringe\n", "w=l*1.6/a//fringe width\n", "//output\n", "printf('the distance between centre and sixth fringe is %3.3e m',x)\n", "printf('\nthe fringe width is %3.3e m',w)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.5: increasing_thickness_effect.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "a=4//widge dimension\n", "b=64//edge of tissue\n", "c=33//bright fringes\n", "l=0.53*10^-6 //wavelength\n", "//calculation\n", "m=b*c/a//number of bright fringes\n", "t=m*l/2//thickness\n", "//output\n", "printf('the thickness is %3.3e m and hence number of fringes also increases',t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.6: wavelength_and_angular_displacement.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "n1=6//6th order image\n", "n2=5//5th order image\n", "n=3000//lines per cm\n", "//calculation\n", "l=n2*0.11*10^-6/(6-5)//applying dsinx=nl\n", "l1=l+(0.11*10^-6)//applying dsinx=nl\n", "d=1/(n*100)//applying dsinx=nl ,grating space calculation\n", "x=n1*l/d \n", "y=asind(x)\n", "//output\n", "printf('the wavenlength of first wave is %3.3e m',l)\n", "printf('\nthe wavenlength of second wave is %3.3e m',l1)\n", "printf('\n the angular displacement is %3.3f deg',y)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.7: wavelength_and_diffraction_angle.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "n2=1.36//refractive index\n", "N=5000*100 //number of lines per m\n", "t=23 //angle of diffraction\n", "//calculation\n", "l=sind(t)/(n2*N)//applying dsinx=nl,calculating wavelength \n", "x=N*l//angle of diffraction\n", "y=asind(x)\n", "//output\n", "printf('the wavelength of light in methanol is %3.3e m',l)\n", "printf('\n the angle of diffraction is %3.3f degrees',y)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.8: telescope_angular_magnification.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//input\n", "fo=1.5//objective's focal length\n", "fc=0.04//eyepiece focal length\n", "//calculation\n", "m=fo/fc//angular magnification\n", "v=fc*(fc+fo)/fo//distance of eye ring from eyepiece\n", "//output\n", "printf('the angular magnification is %3.2f',m)\n", "printf('\n the distance of eye ring from eyepiece is %3.3f m',v)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }