{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: Combustion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.10: volumetric_composition_of_products.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.10');\n", "\n", "// aim : To determine\n", "// volumetric composition of the products of combustion\n", "\n", "// given values\n", "C = .86;// mass composition of carbon\n", "H = .14;// mass composition of hydrogen\n", "Ea = .20;// excess air for combustion\n", "O2 = .23;// mass composition of O2 in air \n", "\n", "MCO2 = 44;// moleculer mass of CO2\n", "MH2O = 18;// moleculer mass of H2O\n", "MO2 = 32;// moleculer mass of O2\n", "MN2 = 28;// moleculer mass of N2,\n", "\n", "\n", "// solution\n", "sO2 = (8/3*C+8*H);// stoichiometric O2 required, [kg/kg petrol]\n", "sair = sO2/O2;// stoichiometric air required, [kg/kg petrol]\n", "// for one kg petrol\n", "mCO2 = 11/3*C;// mass of CO2,[kg]\n", "mH2O = 9*H;// mass of H2O, [kg]\n", "mO2 = Ea*sO2;// mass of O2, [kg]\n", "mN2 = 14.84*(1+Ea)*(1-O2);// mass of N2, [kg]\n", "\n", "mt = mCO2+mH2O+mO2+mN2;// total mass, [kg]\n", "// percentage mass composition\n", "x1 = mCO2/mt*100;// mass composition of CO2\n", "x2 = mH2O/mt*100;// mass composition of H2O\n", "x3 = mO2/mt*100;// mass composition of O2\n", "x4 = mN2/mt*100;// mass composition of N2\n", "\n", "vt = x1/MCO2+x2/MH2O+x3/MO2+x4/MN2;// total volume of petrol\n", "v1 = x1/MCO2/vt*100;// %age composition of CO2 by volume\n", "v2 = x2/MH2O/vt*100;// %age composition of H2O by volume\n", "v3 = x3/MO2/vt*100;// %age composition of O2 by volume\n", "v4 = x4/MN2/vt*100;// %age composition of N2 by volume\n", " \n", "mprintf('\nThe percentage composition of CO2 by volume is = %f\n,\nThe percentage composition of H2O by volume is = %f\n,\nThe percentage composition of O2 by volume is = %f\n,\nThe percentage composition of N2 by volume is = %f\n',v1,v2,v3,v4);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.11: energy_carried_away.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.11');\n", "\n", "// aim : To determine\n", "// the energy carried away by the dry flue gas/kg of fuel burned\n", "\n", "// given values\n", "C = .78;// mass composition of carbon\n", "H2 = .06;// mass composition of hydrogen\n", "O2 = .09;// mass composition of oxygen\n", "Ash = .07;// mass composition of ash\n", "Ea = .50;// excess air for combustion\n", "aO2 = .23;// mass composition of O2 in air \n", "Tb = 273+20;// boiler house temperature, [K]\n", "Tf = 273+320;// flue gas temperature, [K]\n", "c = 1.006;// specific heat capacity of dry flue gas, [kJ/kg K]\n", "\n", "// solution\n", "// for one kg of fuel\n", "sO2 = (8/3*C+8*H2);// stoichiometric O2 required, [kg/kg fuel]\n", "sO2a = sO2-O2;// stoichiometric O2 required from air, [kg/kg fuel]\n", "sair = sO2a/aO2;// stoichiometric air required, [kg/kg fuel]\n", "ma = sair*(1+Ea);// actual air supplied/kg of fuel, [kg]\n", "// total mass of flue gas/kg fuel is\n", "mf = ma+1;// [kg]\n", "mH2 = 9*H2;//H2 produced, [kg] \n", "// hence, mass of dry flue gas/kg coall is\n", "m = mf-mH2;// [kg]\n", "Q = m*c*(Tf-Tb);// energy carried away by flue gas, [kJ]\n", "mprintf('\n The energy carried away by the dry flue gas/kg is = %f kg\n',Q);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.12: stoichiometric_volume_and_composition_of_products.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.12');\n", "\n", "// aim : To determine\n", "// (a) the stoichiometric volume of air for the complete combustion of 1 m^3\n", "// (b) the percentage volumetric analysis of the products of combustion\n", "\n", "// given values\n", "N2 = .018;// volumetric composition of N2\n", "CH4 = .94;// volumetric composition of CH4\n", "C2H6 = .035;// volumetric composition of C2H6\n", "C3H8 = .007;// volumetric composition of C3H8\n", "aO2 = .21;// O2 composition in air\n", "\n", "// solution\n", "// (a)\n", "// for CH4\n", "// CH4 +2 O2= CO2 + 2 H2O\n", "sva1 = 2/aO2;// stoichiometric volume of air, [m^3/m^3 CH4]\n", "svn1 = sva1*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 CH4]\n", "\n", "// for C2H6\n", "// 2 C2H6 +7 O2= 4 CO2 + 6 H2O\n", "sva2 = 7/2/aO2;// stoichiometric volume of air, [m^3/m^3 C2H6]\n", "svn2 = sva2*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 C2H6]\n", "\n", "// for C3H8\n", "// C3H8 +5 O2=3 CO2 + 4 H2O\n", "sva3 = 5/aO2;// stoichiometric volume of air, [m^3/m^3 C3H8]\n", "svn3 = sva3*(1-aO2);// stoichiometric volume of nitrogen in the air, [m^3/m^3 C3H8]\n", "\n", "Sva = CH4*sva1+C2H6*sva2+C3H8*sva3;// stoichiometric volume of air required, [m^3/m^3 gas]\n", "mprintf('\n (a) The stoichiometric volume of air for the complete combustion = %f m^3m^3 gas\n',Sva);\n", "\n", "// (b)\n", "// for one m^3 of natural gas\n", "vCO2 = CH4*1+C2H6*2+C3H8*3;// volume of CO2 produced, [m^3]\n", "vH2O = CH4*2+C2H6*3+C3H8*4;// volume of H2O produced, [m^3]\n", "vN2 = CH4*svn1+C2H6*svn2+C3H8*svn3+N2;// volume of N2 produced, [m^3]\n", "\n", "vg = vCO2+vH2O+vN2;// total volume of gas, [m^3]\n", "x1 = vCO2/vg*100;// volume percentage of CO2 produced\n", "x2 = vH2O/vg*100;// volume percentage of H2O produced\n", "x3 = vN2/vg*100;// volume percentage of N2 produced\n", "\n", "mprintf('\n (b) The percentage volumetric composition of CO2 in produced is = %f\n,\n The percentage volumetric composition of H2O in produced is = %f\n,\n The percentage volumetric composition of N2 in produced is = %f\n',x1,x2,x3);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.13: volume_and_composition_by_mass.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.13');\n", "\n", "// aim : To determine\n", "// (a) the volume of air taken by the fan\n", "// (b) the percentage composition of dry flue gas\n", "\n", "// gien values\n", "C = .82;// mass composition of carbon\n", "H = .08;// mass composition of hydrogen\n", " O = .03;// mass composition of oxygen\n", " A = .07;// mass composition of ash\n", "mc = .19;// coal uses, [kg/s] \n", " ea = .3;// percentage excess air of oxygen in the air required for combustion\n", "Oa = .23;// percentage of oxygen by mass in the air\n", " \n", " // solution\n", " // (a)\n", " P = 100;// air pressure, [kN/m^2]\n", " T = 18+273;// air temperature, [K]\n", " R = .287;// [kJ/kg K]\n", " // basis one kg coal\n", " sO2 = 8/3*C+8*H;// stoichiometric O2 required, [kg]\n", " aO2 = sO2-.03;// actual O2 required, [kg]\n", "tO2 = aO2/Oa;// theoretical O2 required, [kg]\n", "Aa = tO2*(1+ea);// actual air supplied, [kg]\n", "m = Aa*mc;// Air supplied, [kg/s]\n", "\n", "// now using P*V=m*R*T\n", "V = m*R*T/P;// volume of air taken ,[m^3/s]\n", "mprintf('\n (a) Volume of air taken by fan is = %f m^3/s\n',V);\n", "\n", "// (b)\n", "mCO2 = 11/3*C;// mass of CO2 produced, [kg]\n", "mO2 = aO2*.3;// mass of O2 produces, [kg]\n", "mN2 = Aa*.77;// mass of N2 produced, [[kg]\n", "mt = mCO2+mO2+mN2;// total mass, [kg]\n", "\n", "mprintf('\n (b) Percentage mass composition of CO2 is = %f percent \n',mCO2/mt*100);\n", "mprintf('\n Percentage mass composition of O2 is = %f percent\n',mO2/mt*100)\n", "mprintf('\n Percentage mass composition of N2 is = %f percent \n',mN2/mt*100)\n", "\n", "\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.14: mass_and_volume.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.14');\n", "\n", "// aim : To determine \n", "// (a) the mass of fuel used per cycle\n", "// (b) the actual mass of air taken in per cycle\n", "// (c) the volume of air taken in per cycle\n", "\n", "// given values\n", "W = 15;// work done, [kJ/s]\n", "N = 5;// speed, [rev/s]\n", "C = .84;// mass composition of carbon\n", "H = .16;// mass composition of hydrogen\n", "ea = 1;// percentage excess air supplied \n", "CV = 45000;// calorificvalue of fuel, [kJ/kg]\n", "n_the = .3;// thermal efficiency\n", "P = 100;// pressuer, [kN/m^2]\n", "T = 273+15;// temperature, [K]\n", "R = .29;// gas constant, [kJ/kg K]\n", "\n", "// solution\n", "// (a)\n", "E = W*2/N/n_the;// energy supplied, [kJ/cycle]\n", "mf = E/CV;// mass of fuell used, [kg]\n", "mprintf('\n (a) Mass of fuel used per cycle is = %f g\n',mf*10^3);\n", "\n", "// (b)\n", "// basis 1 kg fuel\n", "mO2 = C*8/3+8*H;// mass of O2 requirea, [kg]\n", "smO2 = mO2/.23;// stoichiometric mass of air, [kg]\n", "ma = smO2*(1+ea);// actual mass of air supplied, [kg]\n", "m = ma*mf;// mass of air supplied, [kg/cycle]\n", "mprintf('\n (b) The mass of air supplied per cycle is = %f kg\n',m);\n", "\n", "// (c)\n", "V = m*R*T/P;// volume of air, [m^3]\n", "mprintf('\n (c) The volume of air taken in per cycle is = %f m^3\n',V);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.15: mass_and_composition.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.15');\n", "\n", "// aim : To determine\n", "// (a) the mass of coal used per hour\n", "// (b) the mass of air used per hour\n", "// (c) the percentage analysis of the flue gases by mass\n", "\n", "// given values\n", "m = 900;// mass of steam boiler generate/h, [kg]\n", "x = .96;// steam dryness fraction\n", "P = 1400;// steam pressure, [kN/m^2]\n", "Tf = 52;// feed water temperature, [C]\n", "BE = .71;// boiler efficiency\n", "CV = 33000;// calorific value of coal, [kJkg[\n", "ea = .22;// excess air supply\n", "aO2 = .23;// oxygen composition in air\n", "c = 4.187;// specific heat capacity of water, [kJ/kg K]\n", "\n", "// coal composition\n", "C = .83;// mass composition of carbon\n", "H2 = .05;// mass composition of hydrogen\n", "O2 = .03;// mass composition of oxygen\n", "ash = .09;// mass composition of ash\n", "\n", "// solution\n", "// from steam table at pressure P\n", "hf = 830.1;// specific enthalpy, [kJ/kg]\n", "hfg = 1957.1;// specific enthalpy, [kJ/kg]\n", "hg = 2728.8;// specific enthalpy, [kJ/kg]\n", "\n", "// (a)\n", "h = hf+x*hfg;// specific enthalpy of steam generated by boiler, [kJ/kg]\n", "hfw = c*Tf;// specific enthalpy of feed water, [kJ/kg]\n", "Q = m*(h-hfw);// energy to steam/h, [kJ]\n", "Qf = Q/BE;// energy required from fuel/h, [kJ]\n", "mc = Qf/CV;// mass of coal/h,[kg]\n", "mprintf('\n (a) The mass of coal used per hour is = %f kg\n',mc);\n", "\n", "// (b)\n", "// for one kg coal\n", "mO2 = 8/3*C+8*H2+-O2;// actual mass of O2 required, [kg]\n", "mta = mO2/aO2;// theoretical mass of air, [kg]\n", "ma = mta*(1+ea);// mass of air supplied, [kg]\n", "mas = ma*mc;// mass of air supplied/h, [kg]\n", "mprintf('\n (b) The mass of air supplied per hour is = %f kg\n',mas);\n", "\n", " \n", "// (c)\n", "// for one kg coal\n", "mCO2 = 11/3*C;// mass of CO2 produced, [kg]\n", "mH2O = 9*H2;// mass of H2O produced, [kg]\n", "mO2 = mO2*ea;// mass of excess O2 in flue gas, [kg]\n", "mN2 = ma*(1-aO2);// mass of N2 in flue gas, [kg]\n", "\n", "mt = mCO2+mH2O+mO2+mN2;// total mass of gas\n", "x1 = mCO2/mt*100;// mass percentage composition of CO2\n", "x2 = mH2O/mt*100;// mass percentage composition of H2O\n", "x3 = mO2/mt*100;// mass percentage composition of O2\n", "x4 = mN2/mt*100;// mass percentage composition of N2\n", "\n", "mprintf('\n (c) The mass percentage composition of CO2 = %f,\n The mass percentage composition of H2O = %f,\n The mass percentage composition of O2 = %f,\n The mass percentage composition of N2 = %f',x1,x2,x3,x4);\n", "\n", "// mass of coal taken in part (b) is wrong so answer is not matching\n", "\n", "// End\n", "\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.16: volume_average_moleculer_mass_characteristic_gas_constant_and_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.16');\n", "\n", "// aim : To determine\n", "// (a) volume of gas\n", "// (b) (1) the average molecular mass of air\n", "// (2) the value of R\n", "// (3) the mass of 1 m^3 of air at STP\n", "\n", "// given values\n", "n = 1;// moles of gas, [kmol]\n", "P = 101.32;// standard pressure, [kN/m^2]\n", "T = 273;// gas tempearture, [K]\n", "\n", "O2 = 21;// percentage volume composition of oxygen in air\n", "N2 = 79;// percentage volume composition of nitrogen in air\n", "R = 8.3143;// molar gas constant, [kJ/kg K]\n", "mO2 = 32;// moleculer mass of O2\n", "mN2 = 28;// moleculer mass of N2\n", "\n", "// solution\n", "// (a)\n", "V = n*R*T/P;// volume of gas, [m^3]\n", "mprintf('\n (a) The volume of the gas is = %f m^3\n',V);\n", "\n", "// (b)\n", "//(1)\n", "Mav = (O2*mO2+N2*mN2)/(O2+N2);// average moleculer mass of air\n", "mprintf('\n (b)(1) The average moleculer mass of air is = %f g/mol\n',Mav);\n", "\n", "// (2)\n", "Rav = R/Mav;// characteristic gas constant, [kJ/kg k]\n", "mprintf('\n (2) The value of R is = %f kJ/kg K\n',Rav);\n", "\n", "// (3)\n", "rho = Mav/V;// density of air, [kg/m^3]\n", "mprintf('\n (3) The mass of one cubic metre of air at STP is = %f kg/m^3\n',rho);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.17: pressures_and_volume.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.17');\n", "\n", "// aim : To determine\n", "// (a) the partial pressure of each gas in the vessel\n", "// (b) the volume of the vessel\n", "// (c) the total pressure in the gas when temperature is raised to228 C\n", "\n", "// given values\n", "MO2 = 8;// mass of O2, [kg]\n", "MN2 = 7;// mass of N2, [kg]\n", "MCO2 = 22;// mass of CO2, [kg]\n", "\n", "P = 416;// total pressure in the vessel, [kN/m^2]\n", "T = 273+60;// vessel temperature, [K]\n", "R = 8.3143;// gas constant, [kJ/kmol K]\n", "\n", "mO2 = 32;// molculer mass of O2 \n", "mN2 = 28;// molculer mass of N2\n", "mCO2 = 44;// molculer mass of CO2\n", "\n", "// solution\n", "// (a)\n", "n1 = MO2/mO2;// moles of O2, [kmol]\n", "n2 = MN2/mN2;// moles of N2, [kmol]\n", "n3 = MCO2/mCO2;// moles of CO2, [kmol]\n", "\n", "n = n1+n2+n3;// total moles in the vessel, [kmol]\n", "// since,Partial pressure is proportinal, so\n", "P1 = n1*P/n;// partial pressure of O2, [kN/m^2]\n", "P2 = n2*P/n;// partial pressure of N2, [kN/m^2]\n", "P3 = n3*P/n;// partial pressure of CO2, [kN/m^2]\n", "\n", "mprintf('\n (a)The partial pressure of O2 is = %f kN/m^2,\n, The partial pressure of N2 is = %f kN/m^2,\n The partial pressure of CO2 is = %f kN/m^2,\n',P1,P2,P3);\n", "\n", "// (b)\n", "// assuming ideal gas \n", "V = n*R*T/P;// volume of the container, [m^3]\n", "mprintf('\n (b) The volume of the container is = %f m^3\n',V);\n", "\n", "// (c)\n", "T2 = 273+228;// raised vessel temperature, [K]\n", "// so volume of vessel will constant , P/T=constant\n", "P2 = P*T2/T;// new pressure in the vessel , [kn/m62]\n", "mprintf('\n (c) The new total pressure in the vessel is = %f kN/m^2\n',P2);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.18: mass_and_velocity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.18');\n", "\n", "// aim : To determine\n", "// the actual mass of air supplied/kg coal\n", "// the velocity of flue gas\n", "\n", "// given values\n", "mc = 635;// mass of coal burn/h, [kg]\n", "ea = .25;// excess air required\n", "C = .84;// mass composition of carbon\n", "H2 = .04;// mass composition of hydrogen\n", "O2 = .05;// mass composition of oxygen\n", "ash = 1-(C+H2+O2);// mass composition of ash\n", "\n", "P1 = 101.3;// pressure, [kJn/m^2]\n", "T1 = 273;// temperature, [K]\n", "V1 = 22.4;// volume, [m^3]\n", "\n", "T2 = 273+344;// gas temperature, [K]\n", "P2 = 100;// gas pressure, [kN/m^2]\n", "A = 1.1;// cross section area, [m^2]\n", "aO2 = .23;// composition of O2 in air\n", "\n", "mCO2 = 44;// moleculer mass of carbon\n", "mH2O = 18;// molecular mass of hydrogen\n", "mO2 = 32;// moleculer mas of oxygen\n", "mN2 = 28;// moleculer mass of nitrogen\n", "\n", "// solution\n", "mtO2 = 8/3*C+8*H2-O2;// theoretical O2 required/kg coal, [kg]\n", "msa= mtO2/aO2;// stoichiometric mass of air supplied/kg coal, [kg]\n", "mas = msa*(1+ea);// actual mass of air supplied/kg coal, [kg]\n", "\n", "m1 = 11/3*C;// mass of CO2/kg coal produced, [kg]\n", "m2 = 9*H2;// mass of H2/kg coal produced, [kg]\n", "m3 = mtO2*ea;// mass of O2/kg coal produced, [kg]\n", "m4 = mas*(1-aO2);// mass of N2/kg coal produced, [kg]\n", "\n", "mt = m1+m2+m3+m4;// total mass, [kg]\n", "x1 = m1/mt*100;// %age mass composition of CO2 produced\n", "x2 = m2/mt*100;// %age mass composition of H2O produced\n", "x3 = m3/mt*100;// %age mass composition of O2 produced\n", "x4 = m4/mt*100;// %age mass composition of N2 produced\n", "\n", "vt = x1/mCO2+x2/mH2O+x3/mO2+x4/mN2;// total volume\n", "v1 = x1/mCO2/vt*100;// %age volume composition of CO2\n", "v2 = x2/mH2O/vt*100;// %age volume composition of H2O\n", "v3 = x3/mO2/vt*100;// %age volume composition of O2\n", "v4 = x4/mN2/vt*100;// %age volume composition of N2\n", "\n", "Mav = (v1*mCO2+v2*mH2O+v3*mO2+v4*mN2)/(v1+v2+v3+v4);// average moleculer mass, [kg/kmol]\n", "// since no of moles is constant so PV/T=constant\n", "V2 = P1*V1*T2/(P2*T1);//volume, [m^3]\n", "\n", "mp = mt*mc/3600;// mass of product of combustion/s, [kg]\n", "\n", "V = V2*mp/Mav;// volume of flowing gas /s,[m^3]\n", "\n", "v = V/A;// velocity of flue gas, [m/s]\n", "mprintf('\n The actual mass of air supplied is = %f kg/kg coal\n',mas);\n", "mprintf('\n The velocity of flue gas is = %f m/s\n',v);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.19: temperature_and_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.19');\n", "\n", "// aim : To determine\n", "// (a) the temperature of the gas after compression\n", "// (b) the density of the air-gas mixture\n", "\n", "// given values\n", "CO = 26;// %age volume composition of CO \n", "H2 = 16;// %age volume composition of H2\n", "CH4 = 7;// %age volume composition of CH4 \n", "N2 = 51;// %age volume composition of N2\n", "\n", "P1 = 103;// gas pressure, [kN/m^2]\n", "T1 = 273+21;// gas temperature, [K]\n", "rv = 7;// volume ratio\n", "\n", "aO2 = 21;// %age volume composition of O2 in the air\n", "c = 21;// specific heat capacity of diatomic gas, [kJ/kg K]\n", "cCH4 = 36;// specific heat capacity of CH4, [kJ/kg K]\n", "R = 8.3143;// gas constant, [kJ/kg K]\n", "\n", "mCO = 28;// moleculer mass of carbon\n", "mH2 = 2;// molecular mass of hydrogen\n", "mCH4 = 16;// moleculer mas of methane\n", "mN2 = 28;// moleculer mass of nitrogen\n", "mO2 = 32;// moleculer mass of oxygen\n", "\n", "// solution\n", "// (a)\n", "Cav = (CO*c+H2*c+CH4*cCH4+N2*c+100*2*c)/(100+200);// heat capacity, [kJ/kg K]\n", "\n", "Gama = (Cav+R)/Cav;// heat capacity ratio\n", "// rv = V1/V2\n", "// process is polytropic, so\n", "T2 = T1*(rv)^(Gama-1);// final tempearture, [K]\n", "mprintf('\n (a) The temperature of the gas after compression is = %f C\n',T2-273);\n", "\n", "// (b)\n", "\n", "Mav = (CO*mCO+H2*mH2+CH4*mCH4+N2*mN2+42*mO2+158*mN2)/(100+200)\n", "\n", "// for 1 kmol of gas\n", "V = R*T1/P1;// volume of one kmol of gas, [m^3]\n", "// hence\n", "rho = Mav/V;// density of gas, [kg/m^3]\n", "\n", "mprintf('\n (b) The density of air-gas mixture is = %f kg/m^3\n',rho);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1: stoichiometric_mass.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clear;\n", "clc;\n", "disp('Example 8.1');\n", "\n", "// aim : To determine\n", "// the stoichiometric mass of air required to burn 1 kg the fuel \n", "\n", "// Given values\n", "C = .72;// mass fraction of C; [kg/kg]\n", "H2 = .20;// mass fraction of H2;, [kg/kg]\n", "O2 = .08;// mass fraction of O2, [kg/kg]\n", "aO2=.232;// composition of oxygen in air\n", "\n", "// solution\n", "// for 1kg of fuel\n", "mO2 = 8/3*C+8*H2-O2;// mass of O2, [kg]\n", "\n", "// hence stoichiometric mass of O2 required is\n", "msO2 = mO2/aO2;// [kg]\n", "\n", "mprintf('\n The stoichiometric mass of air required to burn 1 kg the fuel should be = %f kg\n',msO2);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.20: stoichiometric_equatio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.20');\n", "\n", "// aim : to determine \n", "// stoichiometric equation for combustion of hydrogen\n", "\n", "// solution\n", "// equation with algebric coefficient is\n", "// H2+aO2+79/21*aN2=bH2O+79/21*aN2\n", "// by equating coefficients\n", "b = 1;\n", "a = b/2;\n", "// so equation becomes\n", "// 2 H2+ O2+3.76 N2=2 H2O+3.76 N2\n", "disp('The required stoichiometric equation is = ');\n", "disp('2 H2+ O2+3.76 N2 = 2 H2O+3.76 N2');\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.22: gravimetric_compositio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.22');\n", "\n", "// aim : To determine\n", "// the percentage gravimetric analysis of the total products of combustion\n", "\n", "// given values\n", "CO = 12;// %age volume composition of CO\n", "H2 = 41;// %age volume composition of H2\n", "CH4 = 27;// %age volume composition of CH4\n", "O2 = 2;// %age volume composition of O2\n", "CO2 = 3;// %age volume composition of CO2\n", "N2 = 15;// %age volume composition of N2\n", "\n", "mCO2 = 44;// moleculer mass of CO2,[kg/kmol]\n", "mH2O = 18;// moleculer mass of H2O, [kg/kmol]\n", "mO2 = 32;// moleculer mass of O2, [kg/kmol]\n", "mN2 = 28;// moleculer mass of N2, [kg/kmol]\n", " \n", "ea = 15;// %age excess air required\n", "aO2 = 21;// %age air composition in the air\n", "\n", "// solution\n", "// combustion equation by no. of moles\n", "// 12CO + 41H2 + 27CH4 + 2O2 + 3CO2 + 15N2 + aO2+79/21*aN2 = bCO2 + dH2O + eO2 + 15N2 +79/21*aN2\n", "// equating C coefficient\n", "b = 12+27+3;// [mol]\n", "// equatimg H2 coefficient\n", "d = 41+2*27;// [mol]\n", "// O2 required is 15 % extra,so\n", "// e/(e-a)=.15 so e=.13a\n", "// equating O2 coefficient\n", "// 2+3+a=b+d/2 +e\n", "\n", "a = (b+d/2-5)/(1-.13);\n", "e = .13*a;// [mol]\n", "\n", "// gravimetric analysis of product\n", "v1 = b*mCO2;// gravimetric volume of CO2 \n", "v2 = d*mH2O ;// gravimetric volume of H2O \n", "v3 = e*mO2;// gravimetric volume of O2\n", "v4 = 15*mN2 +79/21*a*mN2;// gravimetric volume of N2 \n", "\n", "vt = v1+v2+v3+v4;// total\n", "x1 = v1/vt*100;// percentage gravimetric of CO2\n", "x2 = v2/vt*100;// percentage gravimetric of H2O\n", "x3 = v3/vt*100;// percentage gravimetric of O2\n", "x4 = v4/vt*100;// percentage gravimetric of N2\n", "\n", "mprintf('\n Percentage gravimetric composition of CO2 = %f\n ,\n Percentage gravimetric composition of H2O = %f\n\n Percentage gravimetric composition of O2 = %f\n\n Percentage gravimetric composition of N2 = %f\n',x1,x2,x3,x4);\n", "\n", "// End " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.23: mass_and_volumetric_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.23');\n", "\n", "// aim : To determine\n", "// (a) the actual quantity of air supplied/kg of fuel\n", "// (b) the volumetric efficiency of the engine\n", "\n", "// given values\n", "d = 300*10^-3;// bore,[m]\n", "L = 460*10^-3;// stroke,[m]\n", "N = 200;// engine speed, [rev/min]\n", "\n", "C = 87;// %age mass composition of Carbon in the fuel\n", "H2 = 13;// %age mass composition of H2 in the fuel\n", "\n", "mc = 6.75;// fuel consumption, [kg/h]\n", "\n", "CO2 = 7;// %age composition of CO2 by volume\n", "O2 = 10.5;// %age composition of O2 by volume\n", "N2 = 7;// %age composition of N2 by volume\n", "\n", "mC = 12;// moleculer mass of CO2,[kg/kmol]\n", "mH2 = 2;// moleculer mass of H2, [kg/kmol]\n", "mO2 = 32;// moleculer mass of O2, [kg/kmol]\n", "mN2 = 28;// moleculer mass of N2, [kg/kmol]\n", "\n", "T = 273+17;// atmospheric temperature, [K]\n", "P = 100;// atmospheric pressure, [kn/m^2]\n", "R =.287;// gas constant, [kJ/kg k]\n", "\n", "// solution\n", "// (a)\n", "// combustion equation by no. of moles\n", "// 87/12 C + 13/2 H2 + a O2+79/21*a N2 = b CO2 + d H2O + eO2 + f N2\n", "// equating coefficient\n", "b = 87/12;// [mol]\n", "a = 22.7;// [mol]\n", "e = 10.875;// [mol]\n", "f = 11.8*b;// [mol]\n", "// so fuel side combustion equation is\n", "// 87/12 C + 13/2 H2 +22.7 O2 +85.5 N2\n", "mair = ( 22.7*mO2 +85.5*mN2)/100;// mass of air/kg fuel, [kg]\n", "mprintf('\n (a) The mass of actual air supplied per kg of fuel is = %f kg\n',mair);\n", "\n", "// (b)\n", "m = mair*mc/60;// mass of air/min, [kg]\n", "V = m*R*T/P;// volumetric flow of air/min, [m^3]\n", "SV = %pi/4*d^2*L*N/2;// swept volume/min, [m^3]\n", "\n", "VE = V/SV;// volumetric efficiency\n", "mprintf('\n (b) The volumetric efficiency of the engine is = %fpercent\n',VE*100);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.24: mass_of_air.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.24');\n", "\n", "// aim : To determine\n", "// the mass of air supplied/kg of fuel burnt\n", "\n", "// given values\n", "// gas composition in the fuel\n", "C = 84;// %age mass composition of Carbon in the fuel\n", "H2 = 14;// %age mass composition of H2 in the fuel\n", "O2f = 2;// %age mass composition of O2 in the fuel\n", "\n", "// exhaust gas composition\n", "CO2 = 8.85;// %age composition of CO2 by volume\n", "CO = 1.2// %age composition of CO by volume\n", "O2 = 6.8;// %age composition of O2 by volume\n", "N2 = 83.15;// %age composition of N2 by volume\n", "\n", "mC = 12;// moleculer mass of CO2,[kg/kmol]\n", "mH2 = 2;// moleculer mass of H2, [kg/kmol]\n", "mO2 = 32;// moleculer mass of O2, [kg/kmol]\n", "mN2 = 28;// moleculer mass of N2, [kg/kmol]\n", "\n", "// solution\n", "// combustion equation by no. of moles\n", "// 84/12 C + 14/2 H2 +2/32 O2 + a O2+79.3/20.7*a N2 = b CO2 + d CO2+ eO2 + f N2 +g H2\n", "// equating coefficient and given condition\n", "b = 6.16;// [mol]\n", "a = 15.14;// [mol]\n", "d = .836;// [mol]\n", "f = 69.3*d;// [mol]\n", "// so fuel side combustion equation is\n", "// 84/12 C + 14/2 H2 +2/32 O2 + 15.14 O2 +85.5 N2\n", "mair = ( a*mO2 +f*mN2)/100;// mass of air/kg fuel, [kg]\n", "mprintf('\n The mass of air supplied per kg of fuel is = %f kg\n',mair);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3: stoichiometric_mass_and_composition_of_products.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.3');\n", "\n", "// aim : To determine \n", "// the stoichiometric mass of air\n", "// the products of combustion both by mass and as percentage \n", "\n", "// Given values\n", "C = .82;// mass composition C\n", "H2 = .12;// mass composition of H2\n", "O2 = .02;// mass composition of O2\n", "S = .01;// mass composition of S\n", "N2 = .03;// mass composition of N2\n", "\n", " // solution\n", "// for 1kg fuel\n", "mo2 = 8/3*C+8*H2-O2+S*1;// total mass of O2 required, [kg]\n", "sa = mo2/.232;// stoichimetric air, [kg]\n", "mprintf('\n The stoichiometric mass of air is = %f kg/kg fuel\n',sa);\n", "\n", "// for one kg fuel\n", "mCO2 = C*11/3;// mass of CO2 produced, [kg]\n", "mH2O = H2*9;// mass of H2O produced, [kg]\n", "mSO2 = S*2;// mass of SO2 produce, [kg]\n", "mN2 = C*8.84+H2*26.5-O2*.768/.232+S*3.3+N2;// mass of N2 produced, [kg]\n", "\n", "mt = mCO2+mH2O+mSO2+mN2;// total mass of product, [kg]\n", "\n", "x1 = mCO2/mt*100;// %age mass composition of CO2 produced\n", "x2 = mH2O/mt*100;// %age mass composition of H2O produced\n", "x3 = mSO2/mt*100;// %age mass composition of SO2 produced\n", "x4 = mN2/mt*100;// %age mass composition of N2 produced\n", "\n", "mprintf('\n CO2 produced = %f kg/kg fuel, percentage composition = %f,\n H2O produced = %f kg/kg fuel, percentage composition = %f,\n SO2 produced = %f kg/kg fuel, percentage composition = %f,\n N2 produced = %f kg/kg fuel, percentage composition = %f',mCO2,x1,mH2O,x2,mSO2,x3,mN2,x4);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4: stoichiometric_volume.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.4');\n", "\n", "// aim : To determine \n", "// the stoichiometric volume of air required for complete combution of 1 m^3 of the gas\n", "\n", "// Given values\n", "H2 = .14;// volume fraction of H2\n", "CH4 = .02;// volume fraction of CH4\n", "CO = .22;// volume fraction of CO\n", "CO2 = .05;// volume fraction of CO2\n", "O2 = .02;// volume fraction of O2\n", "N2 = .55;// volume fraction of N2\n", "\n", "// solution\n", "// for 1 m^3 of fuel\n", "Va = .5*H2+2*CH4+.5*CO-O2;// [m^3]\n", "\n", "// stoichiometric air required is\n", "Vsa = Va/.21;// [m^3]\n", "\n", "mprintf('\n The stoichiometric volume of air required for complete combustion is = %f m^3/m^3 fuel\n',Vsa);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5: volume.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.5');\n", "\n", "// aim : To determine\n", "// the volume of the air required \n", "\n", "// Given values\n", "H2 = .45;// volume fraction of H2\n", "CO = .40;// volume fraction of CO\n", "CH4 = .15;// volume fraction of CH4\n", "\n", "// solution\n", "V = 2.38*(H2+CO)+9.52*CH4;// stoichimetric volume of air, [m^3]\n", "\n", "mprintf('\n The volume of air required is = %f m^3/m^3 fuel\n',V);\n", "\n", "// Result in the book is misprinted\n", "\n", "// End\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.6: stoichiometric_volume_composition_of_products.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.6');\n", "\n", "// aim : To determine\n", "// the stoichiometric volume of air for the complete combustion\n", "// the products of combustion\n", "\n", "// given values\n", "CH4 = .142;// volumetric composition of CH4\n", "CO2 = .059;// volumetric composition of CO2\n", "CO = .360;// volumetric composition of CO\n", "H2 = .405;// volumetric composition of H2\n", "O2 = .005;// volumetric composition of O2\n", "N2 = .029;// volumetric composition of N2\n", "\n", "aO2 = .21;// O2 composition into air by volume\n", "\n", "// solution\n", "svO2 = CH4*2+CO*.5+H2*.5-O2;// stroichiometric volume of O2 required, [m^3/m^3 fuel]\n", "svair = svO2/aO2;// stroichiometric volume of air required, [m^3/m^3 fuel]\n", "mprintf('\n Stoichiometric volume of air required is = %f m^3/m^3 fuel\n',svair);\n", "\n", "// for one m^3 fuel\n", "vN2 = CH4*7.52+CO*1.88+H2*1.88-O2*.79/.21+N2;// volume of N2 produced, [m^3]\n", "vCO2 = CH4*1+CO2+CO*1;// volume of CO2 produced, [m^3]\n", "vH2O = CH4*2+H2*1;// volume of H2O produced, [m^3]\n", "\n", "vt = vN2+vCO2+vH2O;// total volume of product, [m^3]\n", "\n", "x1 = vN2/vt*100;// %age composition of N2 in product,\n", "x2 = vCO2/vt*100;// %age composition of CO2 in product\n", "x3 = vH2O/vt*100;// %age composition of H2O in product\n", "\n", "mprintf('\n N2 in products = %fm^3/m^3 fuel, percentage composition = %f,\n CO2 in products = %f m^3/m^3 fuel, percentage composition = %f,\n H2O in products = %fm^3/m^3 fuel, percentage composition = %f',vN2,x1,vCO2,x2,vH2O,x3);\n", "\n", "// End " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.7: composition_of_gases.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.7');\n", "\n", "// aim : To determine\n", "// the percentage analysis of the gas by mass\n", "\n", "// Given values\n", "CO2 = 20;// percentage volumetric composition of CO2\n", "N2 = 70;// percentage volumetric composition of N2\n", "O2 = 10;// percentage volumetric composition of O2\n", "\n", "mCO2 = 44;// moleculer mas of CO2\n", "mN2 = 28;// moleculer mass of N2\n", "mO2 = 32;// moleculer mass of O2\n", "\n", "// solution\n", "mgas = CO2*mCO2+N2*mN2+O2*mO2;// moleculer mass of gas \n", "m1 = CO2*mCO2/mgas*100;// percentage composition of CO2 by mass \n", "m2 = N2*mN2/mgas*100;// percentage composition of N2 by mass \n", "m3 = O2*mO2/mgas*100;// percentage composition of O2 by mass \n", "\n", "mprintf('\n Mass percentage of CO2 is = %f\n\n Mass percentage of N2 is = %f\n\n Mass percentage of O2 is = %f\n',m1,m2,m3 )\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.8: composition_of_gases.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.8');\n", "\n", "// aim : To determine\n", "// the percentage composition of the gas by volume\n", "\n", "// given values\n", "CO = 30;// %age mass composition of CO\n", "N2 = 20;// %age mass composition of N2\n", "CH4 = 15;// %age mass composition of CH4\n", "H2 = 25;// %age mass composition of H2\n", "O2 = 10;// %age mass composition of O2\n", "\n", "mCO = 28;// molculer mass of CO\n", "mN2 = 28;// molculer mass of N2\n", "mCH4 = 16;// molculer mass of CH4\n", "mH2 = 2;// molculer mass of H2\n", "mO2 = 32;// molculer mass of O2\n", "\n", "// solution\n", "vg = CO/mCO+N2/mN2+CH4/mCH4+H2/mH2+O2/mO2;\n", "v1 = CO/mCO/vg*100;// %age volume composition of CO\n", "v2 = N2/mN2/vg*100;// %age volume composition of N2\n", "v3 = CH4/mCH4/vg*100;// %age volume composition of CH4\n", "v4 = H2/mH2/vg*100;// %age volume composition of H2\n", "v5 = O2/mO2/vg*100;// %age volume composition of O2\n", "\n", "mprintf('\n The percentage composition of CO by volume is = %f\n,\nThe percentage composition of N2 by volume is = %f\n\nThe percentage composition of CH4 by volume is = %f\n\nThe percentage composition of H2 by volume is = %f\n\nThe percentage composition of O2by volume is=%f',v1,v2,v3,v4,v5);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.9: mass_of_air_supplied.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 8.9');\n", "\n", "// aim : To determine\n", "// the mass of air supplied per kilogram of fuel burnt\n", "\n", "// given values\n", "CO2 = 8.85;// volume composition of CO2\n", "CO = 1.2;// volume composition of CO\n", "O2 = 6.8;// volume composition of O2\n", "N2 = 83.15;// volume composition of N2 \n", "\n", "// composition of gases in the fuel oil\n", "C = .84;// mass composition of carbon \n", "H = .14;// mass composition of hydrogen\n", "o2 = .02;// mass composition of oxygen\n", "\n", "mC = 12;// moleculer mass of Carbon\n", "mCO2 = 44;// molculer mass of CO2\n", "mCO = 28;// molculer mass of CO\n", "mN2 = 28;// molculer mass of N2\n", "mO2 = 32;// molculer mass of O2\n", "aO2 = .23;// mass composition of O2 in air\n", "\n", "// solution\n", "ma = (8/3*C+8*H-o2)/aO2;// theoretical mass of air/kg fuel, [kg]\n", "\n", "mgas = CO2*mCO2+CO*mCO+N2*mN2+O2*mO2;// total mass of gas/kg fuel, [kg]\n", "x1 = CO2*mCO2/mgas;// composition of CO2 by mass \n", "x2 = CO*mCO/mgas;// composition of CO by mass\n", "x3 = O2*mO2/mgas;// composition of O2 by mass \n", "x4 = N2*mN2/mgas;// composition of N2 by mass \n", "\n", "m1 = x1*mC/mCO2+x2*mC/mCO;// mass of C/kg of dry flue gas, [kg]\n", "m2 = C;// mass of C/kg fuel, [kg]\n", "mf = m2/m1;// mass of dry flue gas/kg fuel, [kg]\n", "mo2 = mf*x3;// mass of excess O2/kg fuel, [kg]\n", "mair = mo2/aO2;// mass of excess air/kg fuel, [kg]\n", "m = ma+mair;// mass of excess air supplied/kg fuel, [kg]\n", "\n", "mprintf('\n The mass of air supplied per/kg of fuel burnt is = %f kg\n',m);\n", " \n", "// End" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }