{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 18: Refrigeration" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.1: coefficient_of_performance_mass_flow_and_cooling_water_requirement.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 18.1');\n", "\n", "// aim : To determine\n", "// (a) the coefficient of performance\n", "// (b) the mass flow of the refrigerant\n", "// (c) the cooling water required by the condenser\n", "\n", "// given values\n", "P1 = 462.47;// pressure limit, [kN/m^2]\n", "P3 = 1785.90;// pressure limit, [kN/m^2]\n", "T2 = 273+59;// entering saturation temperature, [K]\n", "T5 = 273+32;// exit temperature of condenser, [K]\n", "d = 75*10^-3;// bore, [m]\n", "L = d;// stroke, [m]\n", "N = 8;// engine speed, [rev/s]\n", "VE = .8;// olumetric efficiency\n", "cpL = 1.32;// heat capacity of liquid, [kJ/kg K]\n", "c = 4.187;// heat capacity of water, [kj/kg K]\n", "\n", "// solution\n", "// from given table\n", "// at P1\n", "h1 = 231.4;// specific enthalpy, [kJ/kg]\n", "s1 = .8614;// specific entropy,[ kJ/kg K\n", "v1 = .04573;// specific volume, [m^3/kg]\n", "\n", "// at P3\n", "h3 = 246.4;// specific enthalpy, [kJ/kg]\n", "s3 = .8093;// specific entropy,[ kJ/kg K\n", "v3 = .04573;// specific volume, [m^3/kg]\n", "T3= 273+40;// saturation temperature, [K]\n", "h4 = 99.27;// specific enthalpy, [kJ/kg]\n", "// (a)\n", "s2 = s1;// specific entropy, [kJ/kg k]\n", "// using s2=s3+cpv*log(T2/T3)\n", "cpv = (s2-s3)/log(T2/T3);// heat capacity, [kj/kg k]\n", "\n", "// from Fig.18.8\n", "T4 = T3;\n", "h2 = h3+cpv*(T2-T3);// specific enthalpy, [kJ/kg]\n", "h5 = h4-cpL*(T4-T5);// specific enthalpy, [kJ/kg]\n", "h6 = h5;\n", "COP = (h1-h6)/(h2-h1);// coefficient of performance\n", "mprintf('\n (a) The coefficient of performance of the refrigerator is = %f\n',COP);\n", "\n", "// (b)\n", "SV = %pi/4*d^2*L;// swept volume of compressor/rev, [m^3]\n", "ESV = SV*VE*N*3600;// effective swept volume/h, [m^3]\n", "m = ESV/v1;// mass flow of refrigerant/h,[kg]\n", "mprintf('\n (b) The mass flow of refrigerant/h is = %f kg\n',m);\n", "\n", "// (c)\n", "dT = 12;// temperature limit, [C]\n", "Q = m*(h2-h5);// heat transfer in condenser/h, [kJ]\n", "// using Q=m_dot*c*dT, so\n", "m_dot = Q/(c*dT);// mass flow of water required, [kg/h]\n", "mprintf('\n (c) The mass flow of water required is = %f kg/h\n',m_dot);\n", "\n", "// End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 18.2: mass_flow_dryness_fraction_power_and_ratio_of_heat_transfer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear;\n", "clc;\n", "disp('Example 18.2');\n", "\n", "// aim : To determine\n", "// (a) the mass flow of R401\n", "// (b) the dryness fraction of R401 at the entry to the evaporator\n", "// (c) the power of driving motor\n", "// (d) the ratio of heat transferred from condenser to the power required to the motor\n", "\n", "// given values\n", "P1 = 411.2;// pressure limit, [kN/m^2]\n", "P3 = 1118.9;// pressure limit, [kN/m^2]\n", "Q = 100*10^3;// heat transfer from the condenser,[kJ/h]\n", "T2 = 273+60;// entering saturation temperature, [K]\n", "\n", "// given\n", "// from given table\n", "// at P1\n", "h1 = 409.3;// specific enthalpy, [kJ/kg]\n", "s1 = 1.7431;// specific entropy,[ kJ/kg K\n", "\n", "// at P3\n", "h3 = 426.4;// specific enthalpy, [kJ/kg]\n", "s3 = 1.7192;// specific entropy,[ kJ/kg K\n", "T3 = 273+50;// saturation temperature, [K]\n", "h4 = 265.5;// specific enthalpy, [kJ/kg]\n", "// (a)\n", "s2 = s1;// specific entropy, [kJ/kg k]\n", "// using s2=s3+cpv*log(T2/T3)\n", "cpv = (s2-s3)/log(T2/T3);// heat capacity, [kj/kg k]\n", "\n", "// from Fig.18.8\n", "h2 = h3+cpv*(T2-T3);// specific enthalpy, [kJ/kg]\n", "Qc = h2-h4;// heat transfer from condenser, [kJ/kg]\n", "mR401 = Q/Qc;// mass flow of R401, [kg]\n", " mprintf('\n (a) The mass flow of R401 is = %f kg/h\n',mR401);\n", "\n", "// (b)\n", "hf1 = 219;// specific enthalpy, [kJ/kg]\n", "h5 = h4;\n", "// using h5=hf1+s5*(h1-hf1),so\n", "x5 = (h5-hf1)/(h1-hf1);// dryness fraction\n", "mprintf('\n (b) The dryness fraction of R401 at the entry to the evaporator is = %f\n',x5);\n", "\n", "// (c)\n", "P = mR401*(h2-h1)/3600/.7;// power to driving motor, [kW]\n", " mprintf('\n (c) The power to driving motor is = %f kW\n',P);\n", "\n", "// (d)\n", "r = Q/3600/P;// ratio\n", "mprintf('\n (d) The ratio of heat transferred from condenser to the power required to the motor is = %f : 1\n',r);\n", "\n", "// End" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }