{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Operational Amplifiers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.10: R1_and_Rf.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.10\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "Ao = 10;\n", "// Ao = (1+(R_F/R1));\n", "//Given that maximum value of resistor should not exceed 30 kΩ, so we select\n", "R_F= 27;// in k ohm\n", "R1= R_F/(Ao-1);// in k ohm\n", "disp(R_F,'The value of R_F in k ohm is');\n", "disp(R1,'The value of R1 in k ohm is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.11: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.11\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "Va = 0.2;// in V\n", "Vb = -0.5;// in V\n", "Vc = 0.8;// in V\n", "Ra = 33;// in k ohm\n", "Rb = 22;// in k ohm\n", "Rc = 11;// in k ohm\n", "R_F = 66;// in k ohm\n", "// Using Superposition theorm, the output voltage\n", "Vo = (-((R_F/Ra)*Va)) -(((R_F/Rb)*Vb)) -(((R_F/Rc)*Vc));// in V\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.13: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.13\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "Va = 6;// in V\n", "Vb = -3;// in V\n", "Vc = -0.75;// in V\n", "Ra = 10;// in k ohm\n", "Rb = 2.5;// in k ohm\n", "Rc = 4;// in k ohm\n", "R_F = 10;// in k ohm\n", "// The output voltage \n", "Vo = (-((R_F/Ra)*Va)) -(((R_F/Rb)*Vb)) -(((R_F/Rc)*Vc));// in V\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.14: Closed_loop_differential_gain_and_output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.14\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 100;// in ohm\n", "R2 = R1;// in ohm\n", "R3 = 3.9;// in k ohm\n", "R3 = R3 * 10^3;// in ohm\n", "R_F = R3;// in ohm\n", "Vx = -3.2;// in V\n", "Vy = -3;// in V\n", "// output voltage due to Vx, Vox = -(R_F/R1)*Vx and due to Vy, Voy = (R3/(R2+R3)) * (1+(R_F/R1))*Vy\n", "// Vo = Vox + Voy = -(R_F/R1)*Vx + (R_F/R1)*Vy (as R1=R2 and R3=Rf)\n", "//So, Aod = Vo/(Vx-Vy) = -R_F/R1;\n", "Aod = -R_F/R1;\n", "disp(Aod,'The closed loop differential gain is');\n", "Vo = (-R_F/R1)*(Vx-Vy);// in V\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.1: Common_mode_gain.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.1\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "CMRR = 10^5;\n", "Ad = 10^5;\n", "// CMRR = Ad/A_CM;\n", "// The common mode gain of the op-amp \n", "A_CM = Ad/CMRR;\n", "disp(A_CM,'The common mode gain of the op-amp is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.2: Slew_rate.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.2\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "del_V = 20;//change in voltage in V\n", "del_t = 4;//change in time in µS\n", "SR = del_V/del_t;//slew rate in V/µS\n", "disp(SR,'The slew rate in V/µS is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3: Slew_rate.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.3\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "del_V = 0.75;//chagne in voltage in V\n", "del_t = 50;//change in time in ns\n", "// The slew rate \n", "SR = del_V/(del_t*10^-3);// in µs\n", "disp(SR,'The slew rate in V/µ-sec is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.4: Closed_loop_voltage_gain_and_input_impedance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.4\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 1;// in k ohm\n", "R_F = 4.7;// in k ohm\n", "//The closed loop voltage gain, Ao = Vo/Vin = -R_F/R1;\n", "Ao = -R_F/R1;\n", "disp(Ao,'The closed loop voltage gain is');\n", "// The input impedance \n", "Ri = R1;// in k ohm\n", "disp(Ri,'The input impedance in k ohm is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.5: R1_and_R2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.5\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "Ao = -20;\n", "Ri = 5;// in k ohm\n", "R1 = Ri;// in k ohm\n", "disp(R1,'The value of R1 in k ohm is');\n", "// Closed loop voltage gain for inverting amplifier, Ao = -R_F/R1 or\n", "R_F = -Ao*R1;// in k ohm\n", "disp(R_F,'The value of R_F in k ohm is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.6\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 20;// in k ohm\n", "R_F = 300;// in k ohm\n", "Vin = 1.25;// in V\n", "// Ao = Vo/Vin = -R_F/R1;\n", "Ao = -R_F/R1;\n", "// Output voltage,\n", "Vo = Ao*Vin;// in V\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.7: R1_and_Rf.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.7\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "Ao = -4;// in V/V\n", "R_T= 100;// total resistance in k ohm\n", "// R1+R_F= R_T (i)\n", "// Ao= -R_F/R1 (ii)\n", "R_F= R_T/(1-1/Ao);// in k ohm (From eq (i) and (ii))\n", "R1= -R_F/Ao;// in k ohm\n", "disp(R1,'The value of R1 in k ohm is');\n", "disp(R_F,'The value of R_F in k ohm is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.8: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.8\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 15;// in k ohm\n", "R_F = 450;// in k ohm\n", "Vin = -0.25;// in V\n", "// Vo = Ao*Vin\n", "Vo = (1+R_F/R1)*abs(Vin);// in V (on putting, Ao = 1+(R_F/R1))\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.9: R1_and_Rf.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 6.9\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "Ao = 1.5;// in V/V\n", "R = 10;// in k ohm\n", "// Ao = (1+(R_F/R1))\n", "disp('The relation of R1 and R_F can be implemented in two ways : ');\n", "disp('(i) : When R_F= R || R, in this condition')\n", "// When R_F= R || R\n", "R1= R;//in k ohm\n", "R_F= R1*(Ao-1);// in k ohm\n", "disp(R1,'The value of R1 in k ohm is : ');\n", "disp(R_F,'The value of R_F in k ohm is : ')\n", "// When both resistor connected in series\n", "disp('(ii) : When both resistor connected in series, in this condition')\n", "R1= 2*R;// in k ohm\n", "R_F= R1*(Ao-1);// in k ohm\n", "disp(R1,'The value of R1 in k ohm is : ');\n", "disp(R_F,'The value of R_F in k ohm is : ')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_10: Voltage_produced_at_output_terminal.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.10\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R_F = 60;// in ko hm\n", "R1 = 20;// in k ohm\n", "Vin1 = 2;// in V\n", "Vin2 = 0.1;// in V\n", "// The output voltage, by using super position theorm,\n", "Vo = ((-R_F/R1)*Vin1) + ((1+(R_F/R1))*Vin2);// in V\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_11: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.11\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 10;// in k ohm\n", "R2 = 20;// in k ohm\n", "R3 = 10;// in k ohm\n", "R_F = 20;// in k ohm\n", "Vin1 = 2;// in V\n", "Vin2 = 1;// in V\n", "// The output voltage,\n", "Vo = ((-R_F/R1)*Vin1) - ((R_F/R2)*Vin2);// in V\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_12: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.12\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R_F = 20;// in k ohm\n", "R1 = 10;// in k ohm\n", "R2 = 20;// in k ohm\n", "Vin1 = 2;// in V\n", "Vin2 = 2;// in V\n", "Vin3 = 2;// in V\n", "// The output voltage, by using super position theorm,\n", "Vo = ((-R_F/R1)*Vin1) + (-Vin2*R_F/R2+Vin2) + ((R_F/(((R1*R2)/(R1+R2))))*Vin3);// in V\n", "disp(Vo,'The voltage is appeared at the output terminal in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_13: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.13\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 20;// in k ohm\n", "R3 = 10;// in k ohm\n", "R2 = R3;// in k ohm\n", "R_F = 20;// in k ohm\n", "Vin1 = 2;// in V\n", "Vin2 = 2.1;// in V\n", "// The input voltage at non-inverting terminal,\n", "V_A = (R2*Vin2)/R1;// in V\n", "// The output voltage, by using super position theorm,\n", "Vo = ((-R_F/R1)*Vin1) + ((1+(R_F/R1))*(R1/(R2+R3))*V_A);// in V\n", "disp(Vo,'The output voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_15: Maximum_loop_voltage_gai.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.15\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "//Output voltage of the amplifier, Vo = (1+(Rf/Rin))*Vin and voltage gain, Av = Vo/Vin = 1+(Rf/Rin)\n", "Rf = 0;\n", "Rin = 2;// in k ohm\n", "Avmin = 1+(Rf/Rin);\n", "Rf = 100;// in k ohm\n", "// The maximum loop voltage gain \n", "Avmax = 1+(Rf/Rin);\n", "disp(Avmax,'The maximum loop voltage gain is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_18: Output_voltage_and_percentage_error_due_to_common_mode.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.18\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "Ad = 5*10^5;// differential mode gain\n", "CMRR = 80;// in dB\n", "A_CM = Ad/(10^(CMRR/20));// common mode gain\n", "V1 = 745;// in µV\n", "V1 = V1 * 10^-6;// in V\n", "V2 = 740;// in µV\n", "V2 = V2 * 10^-6;// in V\n", "// CMRR = 20*log( Ad/A_CM );\n", "// //output voltage in differential mode gain\n", "Vod = Ad*(V1-V2);// in V\n", "disp(Vod,'The output voltage in differential mode gain in volts is : ')\n", "//output voltage due to common mode gain \n", "Vo_CM = A_CM*((V1+V2)/2);//in V\n", "disp(Vo_CM,'The output voltage due to common mode gain in volts is : ')\n", "Pr = (Vo_CM/Vod)*100;// percentage error in %\n", "disp(Pr,'The percentage error due to common mode in % is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_19: Input_impedance_voltage_gain_and_power_gain.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.19\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 1;// in Mohm\n", "// The input impedance \n", "Rin = R1;// in Mohm\n", "disp(Rin,'The input impedance in Mohm is');\n", "R2 = 1;// in Mohm\n", "// The voltage gain \n", "Avf = -R2/R1;// Voltage gain\n", "disp(Avf,'The voltage gain is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_1: CMRR.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.1\n", "clc;\n", "clear;\n", "close;\n", "format('e',8)\n", "// Given data\n", "Vid = 1;// in mV\n", "Vo = 120;// in mV\n", "V_CM = 1;// in mV\n", "Ad = Vo/Vid;\n", "Vo = 20;// in µV\n", "Vo = Vo * 10^-3;// in mV\n", "A_CM = Vo/V_CM;\n", "Vo = 120;// in mV\n", "// The value of CMRR for the circuit \n", "CMRR = Vo/A_CM;\n", "disp(CMRR,'The value of CMRR for the circuit is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_21: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.21\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "i1 = 1;//input current for first op-amp in mA\n", "i1 = i1 * 10^-3;// in A\n", "R_F = 1;// in k ohm\n", "R_F = R_F * 10^3;// in ohm\n", "// Output voltage at first op-amp stage\n", "Vo = -i1*R_F;// in V\n", "R1 = 10;// in k ohm\n", "R2 = 1;// in k ohm\n", "// The output voltage,\n", "Vg1 = Vo*(1+(R1/R2));// in V\n", "disp(Vg1,'The output volatge in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_22: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.22\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R_S3 = 10;// in k ohm\n", "R_S2 = R_S3;// in k ohm\n", "R_S1 = R_S3;// in k ohm\n", "Rf = 10;// in k ohm\n", "Vs1 = 0.2;// in V\n", "Vs2 = 0.5;// in V\n", "Vs3 = 0.8;// in V\n", "// I = I1+6I2+I3;\n", "// I = (Vs1/R_S1) + (Vs2/R_S2) + (Vs3/R_S3);\n", "// I = - If;\n", "// Vo = -If*Rf;\n", "Vo = (Rf/R_S1)*(Vs1+Vs2+Vs3);// in V (as R_S1= R_S2=R_S3)\n", "disp(Vo,'The value of Vo in volts is : ');\n", "disp('But the supply voltage of 10 V is used, so the op-amp will reach in saturation.');\n", "disp('Hence, output voltage is -10 volts.')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_25: Current_through_RL_resistor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.25\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "//Ratio of R2/R1 = R3/R4 = 4 and R_L = -Vi/R3\n", "Vi = 3.7;// in V\n", "R3 = 2;// in k ohm\n", "R3 = R3 * 10^3;// in ohm\n", "// The current through R_L,\n", "I_L = -Vi/R3;// in A\n", "I_L= I_L*10^3;// in mA\n", "disp(I_L,'The current through R_L in mA is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_2: Closed_loop_gai.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.2\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 10;// in k ohm\n", "R_F = 1000;// in k ohm\n", "// Vin/R1 = -Vo/R_F and Vo/Vin = Ao = -R_F/R1\n", "Ao = abs(-R_F/R1);// in k ohm\n", "disp(Ao,'The closed loop gain is');\n", "Vin = 30;// in mV\n", "Vin = Vin * 10^-3;// in V\n", "// The output voltage,\n", "Vo =-Ao*Vin;// in V\n", "disp(Vo,'The output voltage in V is');\n", "\n", "// Note: The loop gain will be unit less." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_3: Range_of_voltage_gain.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.3\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1min = 10;// in k ohm\n", "R1max = 20;// in k ohm\n", "R_F = 300;// in k ohm\n", "// The closed loop voltage gain corresponding to R1min,\n", "Ao_min = -R_F/R1min;\n", "// The closed loop voltage gain corresponding to R1max,\n", "Ao_max = -R_F/R1max;\n", "disp('The range of voltage gain is : '+string(Ao_max)+' to '+string(Ao_min));" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_4: Range_of_output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.4\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R_F = 500;// in k ohm\n", "R_desh = 20;// in k ohm\n", "Vin = 0.5;// in V\n", "Rd_desh = 0;\n", "R1min = 20;// in k ohm\n", "R1max = 50;// in k ohm\n", "// Ao = Vo/Vin = (1+(R_F/R1));\n", "Vo_max = Vin*(1+(R_F/R1min));// output voltage corresponding to R1min\n", "Vo_min = Vin*(1+(R_F/R1max));// output voltage corresponding to R1max\n", "disp('Range of output voltage is : '+string(Vo_min)+' volts to '+string(Vo_max)+' volts.');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_5: Minimum_and_maximum_closed_loop_voltage_gain.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.5\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 2;// in k ohm\n", "Rdas = 2;// in k ohm\n", "R_Fmin = 2;// in k ohm\n", "R_Fmax = 102;// in k ohm\n", "// Ao = -R_F/R1;\n", "// The minimum closed loop voltage gain \n", "Aomin = -R_Fmin/R1;\n", "disp(Aomin,'The minimum closed loop voltage gain is');\n", "//The maximum closed loop voltage gain \n", "Aomax = -R_Fmax/R1;\n", "disp(Aomax,'The maximum closed loop voltage gain is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_6: Maximum_and_minimum_closed_loop_voltage_gain.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.6\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R1 = 10;// in k ohm\n", "R_F = 0;\n", "// Ao = (1+(R_F/R1));\n", "// The minimum closed loop voltage gain \n", "Aomin = (1+(R_F/R1));\n", "disp(Aomin,'The minimum closed loop voltage gain is');\n", "R_F = 100;// in k ohm\n", "// The maximum closed loop voltage gain \n", "Aomax = (1+(R_F/R1));\n", "disp(Aomax,'The maximum closed loop voltage gain is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_7: Closed_loop_voltage_gai.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.7\n", "clc;\n", "clear;\n", "close;\n", "format('v',7)\n", "// Given data\n", "R1 = 220;// in ohm\n", "R_F = 47;// in k ohm\n", "R_F =R_F * 10^3;// in ohm\n", "// The closed loop voltage for switch position-1\n", "Ao = -R_F/R1;\n", "disp(Ao,'The closed loop voltage for switch position-1 is');\n", "R_F = 18;// in k ohm\n", "R_F = R_F * 10^3;// in ohm\n", "// The closed loop voltage for switch position-2\n", "Ao = -R_F/R1;\n", "disp(Ao,'The closed loop voltage for switch position-2 is');\n", "R_F = 39;// in k ohm\n", "R_F = R_F * 10^3;// in ohm\n", "// The closed loop voltage for switch position-3\n", "Ao = -R_F/R1;\n", "disp(Ao,'The closed loop voltage for switch position-3 is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_8: Closed_loop_voltage_gai.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.8\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R_F = 120;// in k ohm\n", "Rdas1 = 6;// in k ohm\n", "Rddas1 = 3;// in k ohm\n", "R1 = Rdas1;// in k ohm\n", "// For switch position-1 , the closed loop voltage gain,\n", "Ao = 1+(R_F/R1);\n", "disp(Ao,'The closed loop voltage gain for switch position-1 is : ');\n", "R1 = (Rdas1*Rddas1)/(Rdas1+Rddas1);// in k ohm\n", "// For switch position-2, the closed loop voltage gain, \n", "Ao = 1+(R_F/R1);\n", "disp(Ao,'The closed loop voltage gain for switch position-2 is : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.m_9: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa Misc. 6.9\n", "clc;\n", "clear;\n", "close;\n", "format('v',6)\n", "// Given data\n", "R_F = 20;// in k ohm\n", "R1 = 20;// in k ohm\n", "R2 = 10;// in k ohm\n", "Vin1 = 2;// in V\n", "Vin2 = 1;// in V\n", "// The output voltage, by using super position theorm\n", "Vo = ((-R_F/R1)*Vin1) + ((1+(R_F/R1))*Vin2);\n", "disp(Vo,'The output voltage is');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }