{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 7: Superconductivity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3_1: calculate_critical_temperature_of_element.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-7,Example7_3_1,pg 7-6\n", "\n", "Ho=2*10^5 //critical field at absolute zero\n", "\n", "Hc=1*10^5 //critical field at given temperature\n", "\n", "T=8 //temperature\n", "\n", "Tc=T/sqrt(1-(Hc/Ho))\n", "\n", "printf('\ncritical temperature of the element Tc = %.2f Kelvin' ,Tc)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3_2: find_the_critical_field.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-7,Example7_3_2,pg 7-7\n", "\n", "Bo=3.06*10^-2 //critical field at absolute zero\n", "\n", "Tc=3.7 //critical temperature\n", "\n", "T=2 //temperature\n", "\n", "Bc=Bo*(1-(T/Tc)^2)\n", "\n", "printf('\ncritical field of wire Bc = %.5f T',Bc)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3_3: calculate_the_critical_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-7,Example7_3_3,pg 7-7\n", "\n", "Ho=6.5*10^4 //critical field at absolute zero\n", "\n", "Tc=7.18 //critical temperature\n", "\n", "T=4.2 //temperature\n", "\n", "r=0.5*10^-3 //radius of lead wire\n", "\n", "Hc=Ho*(1-(T/Tc)^2)\n", "\n", "Ic=2*%pi*r*Hc\n", "\n", "printf('\ncritical current for wire Ic = %.2f Amperes\n',Ic)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3_4: calculate_the_isotopic_mass.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-7,Example7_3_4,pg 7-8\n", "\n", "Tc1=4.185 //critical temperature 1\n", "\n", "Tc2=4.133 //critical temperature 2\n", "\n", "M1=199.5 //isotopic mass of a metal at temperature T1\n", "\n", "a=0.5\n", "\n", "M2=(Tc1*sqrt(M1)/Tc2)^2\n", "\n", "printf('\nisotopic mass is M2 = %.2f',M2)\n", "" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }