{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Dielectric And Magnetic Materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_10: calculate_Horizontal_component_of_magnetic_field.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_10,pg 3-38\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "B=10.9*10^-5 //flux density\n", "\n", "H=B/u0 //magnetic field\n", "\n", "printf('Horizontal component of magnetic field =')\n", "\n", "disp(H)\n", "\n", "printf('A-m')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_11: calculate_current_required.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_11,pg 3-39\n", "\n", "phi=5.9*10^-3 //magnetic flux\n", "\n", "ur=900 //relative permeability of material\n", "\n", "n=700 //number of turns\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "A=60*10^-4 //cross section area of ring\n", "\n", "l=2 //mean circumference of ring\n", "\n", "B=phi/A //flux density\n", "\n", "H=B/(u0*ur) //magnetic field\n", "\n", "At=H*l //Amp-turns required\n", "\n", "I=At/n //current required\n", "\n", "printf('Current required to produce a flux=')\n", "\n", "disp(I)\n", "\n", "printf('Amp')\n", "\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_12: calculate_Current_required.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_12,pg 3-39\n", "\n", "phi=2.7*10^-3 //magnetic flux\n", "\n", "A=25*10^-4 //cross section area of ring\n", "\n", "r=25*10^-2 //mean circumference of ring\n", "\n", "la=10^-3 //air gap\n", "\n", "ur=900 //relative permeability of material\n", "\n", "n=400 //number of turns\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "d=40*10^-2 //mean diameter of ring\n", "\n", "li=2*%pi*r //mean circumference of ring\n", "\n", "B=phi/A //flux density\n", "\n", "//for air gap\n", "\n", "Ha=B/(u0) //magnetic field for air gap\n", "\n", "//for iron ring\n", "\n", "Hi=B/(u0*ur) //magnetic field for iron ring\n", "\n", "//therefore, Amp turn in air gap\n", "\n", "Ata=Ha*la //Amp-turns required\n", "\n", "//therefore, Amp-turn in ring\n", "\n", "Ati=Hi*li //Amp-turns required\n", "\n", "//therrfore total mmf required\n", "\n", "mmf=Ata+Ati\n", "\n", "//Current required\n", "\n", "I=mmf/n //current required\n", "\n", "printf('Current required =')\n", "\n", "disp(I)\n", "\n", "printf('Amp')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_13: calculate_1_magnetic_intensity_2_magnetization_3_Relative_Permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_13,pg 3-40\n", "\n", "n1=10 //no of turns per cm\n", "\n", "i=2 //current\n", "\n", "B=1 //flux density\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "n=n1*100 //no turns per m\n", "\n", "H=n*i\n", "\n", "printf(' 1) magnetic intensity =')\n", "\n", "disp(H)\n", "\n", "printf('Amp-turn/meter')\n", "\n", "//calculation for magnetization\n", "\n", "I=B/u0-H\n", "\n", "printf(' 2) magnetization =')\n", "\n", "disp(I)\n", "\n", "printf('Amp-turn/meter')\n", "\n", "//relative permeability\n", "\n", "ur=B/(u0*H)\n", "\n", "printf(' 3) Relative Permeability of the ring =')\n", "\n", "disp(int(ur))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_14: calculate_Loss_of_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_14,pg 3-40\n", "\n", "m=40 //wt of the core\n", "\n", "d=7.5*10^3 //density of iron\n", "\n", "n=100 //frequency\n", "\n", "V=m/d //volume of the iron core\n", "\n", "E1=3800*10^-1 //loss of energy in core per cycles/cc\n", "\n", "E2=E1*V //loss of energy in core per cycles\n", "\n", "N=60*n //no of cycles per minute\n", "\n", "E=E2*N //loss of energy per minute\n", "\n", "printf('Loss of energy per minute =')\n", "\n", "disp(E)\n", "\n", "printf('Joule')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_15: calculate_various_parameter_of_magnetic_field.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_15,pg 3-40\n", "\n", "l=30*10^-2 //length of ring\n", "\n", "A=1*10^-4 //cross section area of ring\n", "\n", "i=0.032 //current\n", "\n", "phi=2*10^-6 //magnetic flux\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "N=300 //no of turns in the coil\n", "\n", "//1) flux density\n", "\n", "B=phi/A //flux density\n", "\n", "printf('1) Flux density in the ring =')\n", "\n", "disp(B)\n", "\n", "printf('Wb/m^2')\n", "\n", "//2) magnetic intensity of ring\n", "\n", "n=N/l //no of turns per unit length\n", "\n", "H=n*i //magnetic intensity\n", "\n", "printf(' 2) magnetic intensity =')\n", "\n", "disp(H)\n", "\n", "printf('Amp-turn/meter')\n", "\n", "//3) permeability and relative permeability of the ring\n", "\n", "u=B/H\n", "\n", "printf(' 3) Permeability of the ring =')\n", "\n", "disp(u)\n", "\n", "printf('Wb/A-m')\n", "\n", "ur=u/u0\n", "\n", "printf(' 4) Relative Permeability of the ring =')\n", "\n", "disp(ur)\n", "\n", "//4)Susceptibility\n", "\n", "Xm=ur-1\n", "\n", "printf('5) magnetic Susceptibility of the ring =')\n", "\n", "disp(Xm)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_16: calculate_loss_of_energy_per_hour.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_16,pg 3-41\n", "\n", "E=3000 //loss of energy per cycle per cm^3\n", "\n", "m=12*10^3 //wt of the core\n", "\n", "d=7.5 //density of iron\n", "\n", "n=50 //frequency\n", "\n", "V=m/d //volume of the core\n", "\n", "El=E*V*n*60*60 //loss of energy per hour\n", "\n", "printf('Loss of energy per hour =')\n", "\n", "disp(El)\n", "\n", "printf('Erg')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_17: calculate_Hysteresis_power_loss.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_17,pg 3-41\n", "\n", "n=50 //frequency\n", "\n", "V=10^-3 //volume of the specimen\n", "\n", "//Area of B-H loop\n", "\n", "A=0.5*10^3*1\n", "\n", "P=n*V*A\n", "\n", "printf('Hysteresis power loss =')\n", "\n", "disp(P)\n", "\n", "printf('Watt')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_18: calculate_current_required.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_18,pg 3-42\n", "\n", "phi=1.5*10^-4 //magnetic flux\n", "\n", "ur=900 //relative permeability of material\n", "\n", "n=600 //number of turns\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "A=5.8*10^-4 //cross section area of ring\n", "\n", "d=40*10^-2 //mean diameter of ring\n", "\n", "li=%pi*d //mean circumference of ring\n", "\n", "la=5*10^-3 //air gap\n", "\n", "B=phi/A //flux density\n", "\n", "//for air gap\n", "\n", "Ha=B/(u0) //magnetic field for air gap\n", "\n", "//for iron ring\n", "\n", "Hi=B/(u0*ur) //magnetic field for iron ring\n", "\n", "//therefore, Amp turn in air gap\n", "\n", "Ata=Ha*la //Amp-turns required\n", "\n", "//therefore, Amp-turn in ring\n", "\n", "Ati=Hi*li //Amp-turns required\n", "\n", "//therrfore total mmf required\n", "\n", "mmf=Ata+Ati\n", "\n", "//Current required\n", "\n", "I=mmf/n //current required\n", "\n", "printf('Current required =')\n", "\n", "disp(I)\n", "\n", "printf('Amp')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_19: calculate_reluctance_and_mmf.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_19,pg 3-42\n", "\n", "la=1*10^-2 //air gap\n", "\n", "r=0.5 //radius of ring\n", "\n", "A=5*10^-4 //cross section area of ring\n", "\n", "i=5 //current\n", "\n", "u=6*10^-3 //permeability of iron\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "N=900 //no of turns in the coil\n", "\n", "//let reluctance of iron ring with air gap be S\n", "\n", "S=la/(u0*A)+(2*%pi*r-la)/(u*A)\n", "\n", "printf(' 1) Reluctance =')\n", "\n", "disp(S)\n", "\n", "printf('A-T/Wb')\n", "\n", "mmf=N*i\n", "\n", "printf(' 2) m.m.f =')\n", "\n", "disp(mmf)\n", "\n", "printf('Amp-turn')\n", "\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_1: calculate_resultant_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_1,pg 3-35\n", "\n", "A=650*10^-6 //area\n", "\n", "d=4*10^-3 //seperation of plate\n", "\n", "Q=2*10^-10 //charge\n", "\n", "er=3.5 //relative permitivity\n", "\n", "e0=8.85*10^-12 //absolute permitivity\n", "\n", "V=(Q*d)/(e0*er*A)\n", "\n", "printf('voltage across capacitor =')\n", "\n", "disp(V)\n", "\n", "printf('Volt')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_20: calculate_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_20,pg 3-43\n", "\n", "//the magnetization force is given by,\n", "\n", "//H=NI/l\n", "\n", "H=5*10^3 //coercivity of bar magnet\n", "\n", "l=10*10^-2 //length of solenoid\n", "\n", "N=50 //number of turns\n", "\n", "I=l*H/N\n", "\n", "printf('current =')\n", "\n", "disp(I)\n", "\n", "printf('Ampere')\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_21: calculate_Reluctance_and_current.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_21,pg 3-43\n", "\n", "ur=380 //relative permeability of air\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "A=5*10^-4 //cross section area of ring\n", "\n", "n=200 //number of turns\n", "\n", "d=20*10^-2 //mean diameter of ring\n", "\n", "l=%pi*d //mean circumference of ring\n", "\n", "phi=2*10^-3 //magnetic flux\n", "\n", "S=l/(u0*ur*A) //reluctance\n", "\n", "//using ohm's law for magnetic circuit\n", "\n", "//phi=N*I/S\n", "\n", "I=S*phi/n\n", "\n", "printf(' 1) Reluctance =')\n", "\n", "disp(S)\n", "\n", "printf('A-T/Wb')\n", "\n", "\n", "printf(' 2) current =')\n", "\n", "disp(I)\n", "\n", "printf('Ampere')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_22: calculate_various_parameter_of_magnetic_field.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_22,pg 3-43\n", "\n", "ur=1 //relative permeability of air\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "A=6*10^-4 //cross section area of torroid\n", "\n", "n=500 //number of turns\n", "\n", "r=15*10^-2 //radius of torroid\n", "\n", "I=4 //current in coil\n", "\n", "l=2*%pi*r //mean circumference of torroid\n", "\n", "MMF=n*I\n", "\n", "printf('1) MMF (NI) =')\n", "\n", "disp(MMF)\n", "\n", "printf('AT')\n", "\n", "R=l/(u0*ur*A) //Reluctance\n", "\n", "printf(' 2) Reluctance (R) =')\n", "\n", "disp(R)\n", "\n", "printf('AT/Wb')\n", "\n", "phi=MMF/R //flux\n", "\n", "printf(' 3) Magnetic flux =')\n", "\n", "disp(phi)\n", "\n", "printf('Wb')\n", "\n", "B=phi/A //flux density\n", "\n", "printf(' 4) Flux density =')\n", "\n", "disp(B)\n", "\n", "printf('Wb/m^2')\n", "\n", "H=B/(u0*ur) //magnetic field intensity\n", "\n", "printf(' 5) Magnetic field intensity =')\n", "\n", "disp(H)\n", "\n", "printf('A/m')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_23: calculate_Number_of_AmpereTurns.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_23,pg 3-44\n", "\n", "phi=10^-3 //magnetic flux\n", "\n", "ur=1000 //relative permeability of iron\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "A=5*10^-4 //cross section area of ring\n", "\n", "la=2*10^-3 //air gap\n", "\n", "d=20*10^-3 //mean diameter of ring\n", "\n", "li=%pi*d-la //mean circumference of ring\n", "\n", "//using KVL for magnetic circuit\n", "\n", "//AT(total)=AT(iron)+AT(air gap)\n", "\n", "ATt=(phi/(u0*A))*((li/ur)+la)\n", "\n", "printf('Number of Ampere-Turns required =')\n", "\n", "disp(round(ATt))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_24: calculate_intensity_magnetization_and_flux_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_24,pg 3-44\n", "\n", "X=0.5*10^-5 //susceptibility of material\n", "\n", "H=10^6 //magnetic field strength\n", "\n", "I=X*H //intensity of magnetization\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "B=u0*(H+I) //flux density\n", "\n", "printf(' 1) intensity magnetization =')\n", "\n", "disp(I)\n", "\n", "printf('Amp/m')\n", "\n", "printf(' 2) flux density in the material =')\n", "\n", "disp(B)\n", "\n", "printf('wb/m^2')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_2: find_capacitance_of_capacitor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_2,pg 3-36\n", "\n", "A=2000*10^-6 //area\n", "\n", "d=0.5*10^-6 //seperation of plate\n", "\n", "er=8 //relative permitivity\n", "\n", "e0=8.85*10^-12 //absolute permitivity\n", "\n", "C=(e0*er*A)/d\n", "\n", "printf('capacitance for capacitor =')\n", "\n", "disp(C)\n", "\n", "printf('Faraday')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_3: calculate_relative_permittivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_3,pg 3-36\n", "\n", "E=1000 //electric field\n", "\n", "P=4.3*10^-8 //polarization\n", "\n", "e0=8.854*10^-12 //absolute permitivity\n", "\n", "er=(P/(e0*E))+1 //as P/E=e0(er-1)\n", "\n", "printf('relative permittivity =')\n", "\n", "disp(er)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_4: ratio_of_two_capacitor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_4,pg 3-36\n", "\n", "//As C=e0*er*A/d\n", "\n", "e0=%e //absolute permitivity\n", "\n", "Ag=%s\n", "\n", "Ap=Ag //Assuming Area of glass plate and plastic film is same\n", "\n", "//for glass\n", "\n", "erg=6 //relative permitivity\n", "\n", "dg=0.25 //thickness\n", "\n", "Cg=e0*erg*Ag/dg\n", "\n", "//for plastic film\n", "\n", "erp=3 //relative permitivity\n", "\n", "dp=0.1 //thickness\n", "\n", "Cp=e0*erp*Ap/dp\n", "\n", "m=Cg/Cp\n", "\n", "printf('since Cg/Cp=')\n", "\n", "disp(m)\n", "\n", "printf('plastic film holds more charge')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_5: calculate_electronic_polarizability_and_radius_of_He_atom.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_5,pg 3-37\n", "\n", "N=2.7*10^25 //no of atoms per m^3\n", "\n", "er=1.0000684 //dielectric constant of He atom at NTP\n", "\n", "e0=8.854*10^-12 //absolute permitivity\n", "\n", "a=e0*(er-1)/N //electronic polarizability\n", "\n", "printf('1) electronic polarizability=')\n", "\n", "disp(a)\n", "\n", "R=(a/(4*%pi*e0))^(1/3) //radius of helium atom\n", "\n", "printf('2) radius of He atoms =')\n", "\n", "disp(R)\n", "\n", "printf('meter')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_6: calculate_electric_susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_6,pg 3-37\n", "\n", "er=1.000014 //dielectric constant of He atom at NTP\n", "\n", "Xe=er-1 //electric susceptibility\n", "\n", "printf('electric susceptibility =')\n", "\n", "disp(Xe)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_7: calculate_relative_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_7,pg 3-37\n", "\n", "T=300 //temperature of paramagnetic material\n", "\n", "X=3.7*10^-3 //susceptibility of material\n", "\n", "C=X*T //using Curie's law\n", "\n", "T1=250 //temperature\n", "\n", "T2=600 //temperature\n", "\n", "u1=C/T1 //relative permeability of material at 250k\n", "\n", "u2=C/T2 //relative permeability of material at 350k\n", "\n", "printf('relative permeability at temp 250K=')\n", "\n", "disp(u1)\n", "\n", "printf('relative permeability at temp 600K =')\n", "\n", "disp(u2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_8: calculate_Temperature.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_8,pg 3-38\n", "\n", "u=0.8*10^-23 //magnetic dipole moment of an atom \n", "\n", "B=0.8 //magnetic field\n", "\n", "K=1.38*10^-23 //boltzmann constant\n", "\n", "T=(2*u*B)/(3*K) //temperature\n", "\n", "printf('Temperature at which average thermal energy of an atom is equal to magntic energy=')\n", "\n", "disp(T)\n", "\n", "printf('K')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.17_9: calculate_magnetization_of_paramagnetic_material.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Chapter-3,Example3_17_9,pg 3-38\n", "\n", "B=0.5 //magnetic field\n", "\n", "t=27 //temperature in degree celcius\n", "\n", "T=273+t //temperature in kelvin\n", "\n", "u0=4*%pi*10^-7 //permeability of free space\n", "\n", "C=2*10^-3 //Curie's constant\n", "\n", "M=(C*B)/(u0*T) //magnetization of material\n", "\n", "printf('magnetization of paramagnetic material =')\n", "\n", "disp(M)\n", "\n", "printf('A/m')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }